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ABSTRACT

Influence functions are analytical tools from robust statistics
that can help interpret the decisions of black-box machine
learning models. Influence functions can be used to attribute
changes in the loss function due to small perturbations in the
input features. The current work on using influence func-
tions is limited to the features available before the last layer
of deep neural networks (DNNs). We extend the influence
function approximation to DNNs by computing gradients in
an end-to-end manner and relate changes in the loss function
to individual input features using an efficient algorithm. We
propose an accurate mortality prediction neural network and
show the effectiveness of extended influence functions on the
eICU dataset. The features chosen by proposed extended in-
fluence functions were more like those selected by human ex-
perts than those chosen by other traditional methods.

Index Terms— Explainable AI, XAI, Bioinformatics,
Influence Functions, Robust Statistics, Mortality Prediction,
Explainable deep learning,

1. INTRODUCTION

The black-box nature of deep learning models is limiting their
applicability in high-risk areas, including medical diagnosis
and treatment planning [1]. Recently, various areas of health-
care have seen an enormous rise in the data quantity [2]. All
patient records have moved from paper to the standard Elec-
tronic Health Record (EHR), and vital sign data and even
waveform data can be downloaded from bedside monitors.
Medical diagnosis is especially critical as preliminary stud-
ies have shown poor performance and high false alarm rates
with the medical community having a negative view of mod-
els when used in practice [3, 4].
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In machine learning, the explainability of a model and its
performance are generally competing factors [5]. Explain-
able models, (logistic regression, trees, etc.) are often outper-
formed by black-box models (neural networks (NNs)). Early
work has been done by Ribeiro, et. al who explain the pre-
dictions of any classifier using Local Interpretable Model-
Agnostic Explanations (LIME) and High Precision Model-
Agnostic Explanations (Anchors) [6, 7]. While LIME’s lo-
cal explanation breaks down immediately upon changing the
point under test, Anchors resolves this by optimizing for the
whole test set. These model agnostic approaches leave much
to be desired in terms of explainability, and, therefore, model-
specific approaches are preferred especially for NNs. A lot of
work in the field of explainable machine learning has been
done for image datasets. Specifically, saliency maps are used
to propagate classification information from the last layers of
Neural Networks to their inputs. For image data specifically
this results in a 2D map that is the size of the original in-
put where each pixel’s intensity represents how important that
pixel is to the classification [8, 9, 10, 11, 12, 13].

In this paper, we investigated analytical techniques known
as influence functions which originate from robust statistics.
Influence functions allow one to approximate the change that
a leave one out (LOO) training scheme would have on param-
eters [14]. Recently, Koh and Liang showed that influence
functions can be used to approximate which training points
most effected the loss of a test point and what features were
most important for each training point [15]. Since this algo-
rithm is model-specific, it can be leveraged to extract multiple
statistics about how the model interprets the data. This makes
influence functions an ideal candidate for use in the medical
field. One of the limitations of their work is that the gradient
is not propagated through the multiple layers of the network
[16]. Authors use features from the last layer as an input to
a logistic regression model and approximate influence func-
tions [15]. The algorithm cannot provide any information on
how the original features affected functions of test loss [15].

The current state-of-the-art for mortality prediction ex-
ists in the form of evaluation scores. Acute Physiology and
Chronic Health Evaluation (APACHE), and Simplified Acute
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Physiology Score (SAPS) are examples of mortality predic-
tors [17, 18]. A simple logistic regression model is fitted to
these scores and a binary classifier is built. These methods
have been shown to have area under the curve (AUC) from
0.6-0.7 depending on the time of prediction [19]. The pre-
diction time has a huge impact on the utility of these models.
Predicting mortality at 48 hours from admittance is not as use-
ful as predicting at the time of admission or after 24 hours. In
this work, we focused on predicting mortality at 24 hours af-
ter admittance in the ICU.

The main contributions of this paper are threefold.

1. The influence function approximation is extended such
that gradients may be calculated in an end-to-end man-
ner from last layer of a network to the first layer.

2. We proposed a new mortality prediction model and
compared its performance to the current state-of-the-
art.

3. The top features extracted by different prediction mod-
els are compared to those chosen by domain experts.

2. APPROACH

2.1. Influence Functions

We consider the problem of predicting binary label y given
the feature data x. Let zi = (xi, yi), where i = 1, 2, · · · , n,
represent n input-output pairs. Building on the work of Koh
and Liang, we find approximations for the local feature im-
portance FIlocal and global feature importance FIglobal [15].

We start by defining the loss function for a trained model
L(z, θ) =

∑n
i=1 L(zi, θ), where θ represents optimal model

parameters. The gradient of the loss function with respect to
its parameters θ is given by ∇θL(z, θ) = ∇θ

∑n
i=1 L(zi, θ).

The change introduced in the parameters θ by removing a
training point z is given by [15]:

Iup, params(z) = −H−1θ ∇θL(z, θ), (1)

where Hθ = ∇2
θL(z, θ) represents the Hessian. The effect

of removing a training point z on the loss of a particular test
point ztest is given by [15]:

Iup, loss(z, ztest) = −∇θL(ztest, θ)
>H−1θ L(z, θ). (2)

Furthermore, the effect of small changes in the input feature
x on the loss at the test point ztest is given by [15]:

Ipert, loss(z, ztest)
> = −∇θL(ztest, θ)

>H−1θ ∇x∇θL(z, θ).
(3)

It is noted that the components of Iup, params(z), Iup, loss(z, ztest),
and Ipert, loss(z, ztest) can take on positive or negative values.
Also, Iup, params(z) provides an approximation for the change
in the parameters θ, while Iup, loss(z, ztest), and Ipert, loss(z, ztest)
provide approximate changes in the loss function L(z, θ). A

positive value indicates that removing the training point z or
perturbing a particular input x would increase the loss on that
test point ztest. On the other hand, a negative value would
indicate a decrease in the loss function.

2.2. Feature Importance - Local and Global

We define feature importances by taking the average of Eq.
(3) across all training points in the dataset. Later, when ex-
amining the loss of one test point ztest, we refer to this as the
local feature importance given by:

FIlocal =
1

N

N∑
i=1

Ipert, loss(zi, ztest, point). (4)

Where N is the number of training points in the dataset. When
using the average loss across all test points, we refer to this as
the global feature importance:

FIglobal =
1

N

N∑
i=1

Ipert, loss(zi, ztest, set). (5)

2.3. Extended Influence Functions

Koh and Liang freeze all but the top layer of the Neural Net
and use the extracted features to train a logistic regression
classifier [15] (which breaks the computational graph). The
authors assume that the influence functions calculated using
the extracted features sufficiently capture all possible changes
in the input x, which limits the applicability of their frame-
work [15]. We remove this restriction of using the extracted
features by keeping the graph intact and provide a methodol-
ogy for layer-by-layer calculation of the influence functions.

In our settings, we compute the influence functions using
Eqs. (4) and (5) with respect to the output layer only rather
than with respect to each layer of the Neural Net. This en-
ables an efficient computation of the influence functions. Our
approach is inspired by the techniques used in saliency maps
[8, 9, 10, 11, 12, 13]. We perform stochastic estimation of the
inverse of the Hessian using the LiSSA algorithm [20]. As
our approach involves the computation of the Hessian, all op-
erations in the Neural Network must be twice differentiable.
Therefore, we used Scaled Exponential Linear Units (SELU)
[21] activation functions (as opposed to Rectified Linear Units
(ReLU)) and the cross-entropy loss function.

2.4. Synthetic Gaussian Dataset

We tested our extended influence functions, Eqs. (4) and (5),
using simulated data. We generated two multivariate Gaus-
sian distributions, each having two dimensions. Both distri-
butions shared the same mean in the first dimension and had
different means in the second dimension. Therefore, it should
be easy to quantify the feature importance. We split the data
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Table 1. AUC scores for both test datasets. The best performing algorithm is shown in bold.
Septic Patients: ROC AUC

SMOTE Oversampling SAPS APACHE IVa Logistic Regression XGBoost Neural Network
No 0.7717 0.7849 0.7985 0.6901 0.7969
Yes 0.7736 0.7864 0.8001 0.7199 0.8046

All-Comers Patients: ROC AUC
No 0.8325 0.8451 0.8463 0.6892 0.8326
Yes 0.8330 0.8457 0.8474 0.8124 0.8564

into train and test sets and trained two classifiers, i.e., a lo-
gistic regression and a neural network with one hidden layer.
We evaluated the correlation between the logistic regression
coefficients (ground truth) and feature importance from Eq.
(3).

2.5. eICU Collaborative Research Database

The eICU database is a collection of datasets from multiple
intensive care units (ICUs) across the United States [22]. We
chose the dataset that included first-day laboratory test re-
sults as input features (x) and patient survival as labels (y).
Furthermore, we split the dataset into two groups, (1) sep-
tic: dataset of patients who were diagnosed for sepsis only,
and (2) all-comers: dataset of patients with all diagnosis. The
septic patient data is a sub-set of the all-comers dataset. The
decision to split dataset was based on the assumption that the
features indicating mortality may differ depending on the di-
agnosis of the patient, i.e., septic or non-septic. For the septic
dataset we have 19379 instances and 28 input features. For
the all-comers dataset we have 148532 instances and 20 input
features.
Data Pre-processing: We start with a correlation analysis
of all features in the datasets. Subsequently, all features with
a correlation coefficient greater than 0.9 were dropped from
the dataset. The missing data were assumed to be missing at
random and features with the number missing data > 50% of
the total data were dropped from the dataset. For the rest of
the missing data, we used multiple imputation with chained
equations via iterative imputer method available in the ski-kit
learn package [23].
Training, Validation, and Testing: We used k-fold cross-
validation with k = 5 for the performance evaluation of all
models. For each split, the training and testing data were
standardized using the mean and the standard deviation of the
training data. We observed a large class imbalance in our
dataset (90%-10% in septic and 95%-5% in all-comers). To
explore further and address the potential problem of class im-
balance, we trained and tested two sets of models, (1) without
introducing any class balancing technique, and (2) performing
minority class oversampling using Synthetic Minority Over-
sampling Technique (SMOTE) [24]. SMOTE performs syn-

thetic sampling using interpolation along the space between
a minority instance’s k-nearest-neighbors until the number of
classes are equal.

In addition to SAPS and APACHE, which were available
in the database, we trained three models, i.e., logistic regres-
sion, XGBoost, and a Neural Net with one hidden layer using
SELU activations. We used nested grid search to find optimal
hyperparameters for the logistic regression (C, Penalty, etc.)
and XGBoost (max depth, learning rate, etc.) models; how-
ever, for the Neural Net, we used Bayesian optimization avail-
able in Weights and Biases package [25]. For each patient, we
extracted corresponding APACHE and SAPS scores and fit a
logistic regression model using the same training and testing
scheme as described above for the other three models. We
evaluated all five models using Receiver Operating Character-
istic (ROC) curves and Area Under the Curve (AUC) metric.
The models scoring highest on the ROC AUC metric were
selected to evaluate the test set for each cross-validation loop.
Extraction and Comparison of Important Features: We
extracted important features from each model using various
techniques and compared these with features manually se-
lected by domain experts. We created a survey that included
all features from both datasets and asked ICU clinicians (n=50
for the septic dataset and n=20 for the all-comers dataset) to
pick top the 10 features that they believed were the best indi-
cators for patient mortality.

For the logistic regression model, we selected features
with the highest absolute value. For XGBoost we calculated
SHapley Additive exPlanations (SHAP) values for each fea-
ture and selected those with the highest values [26]. For the
Neural Net, we used SHAP (via DeepLIFT) and extended
influence functions to select important features. To evalu-
ate how each of these methods performed, we found 10 fea-
tures most often picked by the domain experts and counted
how many features were common in the top 10 ranked by the
above methods.

3. RESULTS AND DISCUSSION

3.1. Synthetic Gaussian Dataset

We evaluated how the feature importance values can change
across test samples. When evaluating the center points of each
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Fig. 1. ROC curves for different models for each test dataset are presented. AUC is calculated and presented in the legend for
each model.

Fig. 2. Synthetic multi-variate Gaussian distributions data
used for the evaluation of proposed extended influence func-
tions.

distribution as our test point (Fig. 2) we noticed very differ-
ent average feature importances that were also different from
the logistic regression coefficients (Eq. 4). When the entire
test set is used to compute the loss (Eq. 5), however, the fea-
ture importance values approach the logistic regression coef-
ficients (the ground truth) with correlation values above 0.95
with p < 0.05.

3.2. eICU Database

In Fig. 1, we present ROC curves for both test datasets (septic
and all-comers) and for all five models, Neural Net, logistic
regression, XGBoost, SAPS, and APACHE. In Table 1 we
present AUC scores for both tests datasets and all five models
for two cases, i.e., with and without SMOTE oversampling.
We note that for both datasets, the Neural Network outper-
forms all other models and XGBoost is the worst performing
model.

If we look at each dataset by itself, the difference in
performance between the mortality scores and our models
is much better in the septic dataset. It appears that a larger

performance boost can be attained by creating models for spe-
cific diagnosis groups rather than one model for all diagnosis
groups. XGBoost consistently performed worse than all other
models in all scenarios. Logistic Regression performed about
as well as the traditional mortality scores which is expected
due to the predictions of these scores being based on the
same raw variables. Neural Nets consistently outperformed
all other models when the minority class was oversampled.

In Table 3, we present count numbers for the various mod-
els and important features selected by those models for both
datasets. We note that XGBoost with SHAP had more in com-
mon with the features selected by clinicians. However, XG-
Boost was the worst predictor of mortality as compared to
other models. It is important to note that both SHAP algo-
rithms (XGBoost and the Neural Net) extracted the control
variable (patient ID) in their top 10 features. However, this
was not the case for the Neural Net with influence functions,
which was also the best predictor of patient mortality.

On the sepsis dataset, the runtime for the Neural Net ex-
tended influence functions was around 1.5 minutes to cal-
culate global feature importance. However, the runtime for
SHAP with Neural Net was around 220 minutes. The compu-
tational efficiency of the proposed extended influence func-
tions was even more evident in the all-comers dataset, e.g.,
SHAP calculations took more than one week on a NVIDIA
TITAN V GPU.

We note that there were significant differences between
the top ten features chosen by the clinician as compared to
those by the algorithms. The features selected by clinician
included comorbidities such as metastatic cancer, AIDS, and
need for immunosuppression but these were less likely to be
in the algorithm feature selection lists. The differences are
stark but not necessarily surprising. Physicians being humans
will always have biases and blind spots, both of which are
more likely with the inherent stressors of the ICU. This study
is limited due to the small size of our surveys as well as known
variability in clinician decision making for end of life care
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Table 2. Feature ranking (FR) of septic and all-comers datasets. RF - Feature Rank (1-highest, 10-lowest), LR - Logistic
Regression, XG - XGBoost, and NN - Neural Network.

Septic Dataset
FR Survey LR - no SMOTE LR - SMOTE XG SHAP - no SMOTE XG SHAP - SMOTE NN SHAP - no SMOTE NN SHAP - SMOTE NN IFs - no SMOTE NN IFs - SMOTE
1 hepaticfailure CHLORIDE max CHLORIDE max PT max LACTATE max gender SODIUM max LACTATE max CHLORIDE max
2 LACTATE max BICARBONATE min BICARBONATE min LACTATE max BICARBONATE min day1motor BICARBONATE min age LACTATE max
3 age LACTATE max LACTATE max BICARBONATE min day1motor age diabetes PT max INR max
4 immunosuppression ALBUMIN min ALBUMIN min BUN max BUN max BILIRUBIN max WBC max SODIUM min BICARBONATE min
5 metastaticcancer SODIUM max SODIUM max INR max INR max diabetes SODIUM min SODIUM max PT max
6 CREATININE day1motor ANIONGAP max PLATELET min ALBUMIN min patientunitstayid ANIONGAP max BUN max SODIUM max
7 INR age age ALBUMIN min age BICARBONATE min day1motor HEMATOCRIT min day1motor
8 GCS-motor ANIONGAP max day1motor day1motor BILIRUBIN max hepaticfailure ALBUMIN min metastaticcancer BUN max
9 BILIRUBIN BUN max SODIUM min HEMATOCRIT min patientunitstayid SODIUM min BUN max INR max hepaticfailure
10 leukemia SODIUM min BUN max GLUCOSE min aids SODIUM max CHLORIDE max lymphoma diabetes

All-Comers Dataset
1 age day1motor day1motor LACTATE max day1motor ANIONGAP max CHLORIDE max day1motor day1motor
2 immunosuppression BICARBONATE min CHLORIDE max day1motor LACTATE max gender PLATELET min BICARBONATE min LACTATE max
3 hepaticfailure ALBUMIN min ALBUMIN min CREATININE max BUN max HEMATOCRIT min GLUCOSE min PT max INR max
4 LACTATE max CHLORIDE max BICARBONATE min ALBUMIN min CREATININE max GLUCOSE min day1motor ALBUMIN min PT max
5 metastaticcancer LACTATE max age PT max ALBUMIN min LACTATE max CREATININE max CHLORIDE max ALBUMIN min
6 CREATININE age LACTATE max BUN max PT max ALBUMIN min SODIUM max ANIONGAP max BICARBONATE min
7 leukemia SODIUM max SODIUM max INR max INR max age BICARBONATE min CHLORIDE min PTT max
8 PLATELET ANIONGAP max ANIONGAP max PLATELET min age BICARBONATE min INR max gender CREATININE max
9 BILIRUBIN BUN max BUN max PTT max gender SODIUM min PTT max SODIUM min ANIONGAP max
10 aids HEMATOCRIT min CREATININE max HEMATOCRIT min ANIONGAP max PTT max LACTATE max PTT max SODIUM max

[27]. The features selected for each experiment as well as the
clinician opinion can be found in Table 2.

Table 3. Common feature count by model and important fea-
ture selection algorithm type.

Model with algorithm Type Septic All-comers
Logistic regression coefficients 3 2

XGBoost with SHAP 5 3
NN with SHAP 4 2

NN with influence functions 4 2

4. CONCLUSION AND FUTURE WORK

The intersection of physician reasoning and machine learn-
ing is beginning to take the center stage. In our study, we
attempted to create a more accurate and explainable predic-
tion model using extended influence functions. We compared
physician opinion on the top ten comorbidities, labs, and
exam findings that would predict ICU mortality to that of var-
ious machine learning algorithms. Neural Networks achieved
highest AUC score using the first 24-hour hospital admis-
sion features as compared to traditional mortality scores such
as APACHE, and SAPS, especially in the sepsis dataset.
We found that Neural Nets with extended influence func-
tions were superior to the competing algorithms in predictive
power, explanation accuracy and computation time. Further
work may be able to shed some light on features that have
been overlooked by domain experts for certain diagnoses.

5. REFERENCES

[1] Sana Tonekaboni, Shalmali Joshi, Melissa D McCrad-
den, and Anna Goldenberg, “What clinicians want:

contextualizing explainable machine learning for clin-
ical end use,” arXiv preprint arXiv:1905.05134, 2019.

[2] Prabha Susy Mathew and Anitha S Pillai, “Big data so-
lutions in healthcare: Problems and perspectives,” in
2015 International Conference on Innovations in Infor-
mation, Embedded and Communication Systems (ICI-
IECS). IEEE, 2015, pp. 1–6.

[3] Maya Dewan, Naveen Muthu, Eric Shelov, Christo-
pher P Bonafide, Patrick Brady, Daniela Davis, Eric S
Kirkendall, Dana Niles, Robert M Sutton, Danielle
Traynor, et al., “Performance of a clinical decision sup-
port tool to identify picu patients at high risk for clinical
deterioration,” Pediatric Critical Care Medicine, 2019.

[4] Jennifer C Ginestra, Heather M Giannini, William D
Schweickert, Laurie Meadows, Michael J Lynch, Kim-
berly Pavan, Corey J Chivers, Michael Draugelis,
Patrick J Donnelly, Barry D Fuchs, et al., “Clinician per-
ception of a machine learning–based early warning sys-
tem designed to predict severe sepsis and septic shock,”
Critical care medicine, vol. 47, no. 11, pp. 1477–1484,
2019.

[5] Leilani H Gilpin, David Bau, Ben Z Yuan, Ayesha Ba-
jwa, Michael Specter, and Lalana Kagal, “Explaining
explanations: An overview of interpretability of ma-
chine learning,” in 2018 IEEE 5th International Confer-
ence on data science and advanced analytics (DSAA).
IEEE, 2018, pp. 80–89.

[6] Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestrin, “” why should i trust you?” explaining the
predictions of any classifier,” in Proceedings of the 22nd
ACM SIGKDD international conference on knowledge
discovery and data mining, 2016, pp. 1135–1144.

Authorized licensed use limited to: ROWAN UNIVERSITY. Downloaded on January 11,2021 at 02:48:00 UTC from IEEE Xplore.  Restrictions apply. 



[7] Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestrin, “Anchors: High-precision model-agnostic ex-
planations,” in Thirty-Second AAAI Conference on Arti-
ficial Intelligence, 2018.

[8] Karen Simonyan, Andrea Vedaldi, and Andrew Zisser-
man, “Deep inside convolutional networks: Visualising
image classification models and saliency maps,” arXiv
preprint arXiv:1312.6034, 2013.

[9] Daniel Smilkov, Nikhil Thorat, Been Kim, Fernanda
Viégas, and Martin Wattenberg, “Smoothgrad: re-
moving noise by adding noise,” arXiv preprint
arXiv:1706.03825, 2017.

[10] Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas
Brox, and Martin Riedmiller, “Striving for sim-
plicity: The all convolutional net,” arXiv preprint
arXiv:1412.6806, 2014.

[11] Sebastian Bach, Alexander Binder, Grégoire Montavon,
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