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Abstract—The multilayer and nonlinear structure of complex
machine learning models is widely referred to as the black box
because they are not transparent and hence, their decisions
are difficult to explain. Interpretability techniques are used to
understand the black box nature of these complex models by
facilitating a comprehension of how and why a decision is taken.
One technique is the saliency map which processes an image
to depict each pixel’s visual significance as a gray scale value.
This paper (1) examines and evaluates several recent saliency
mapping algorithms with respect to how effective they are at
interpreting the results of a deep convolutional neural network
and (2) configures and assesses novel combinational techniques.
Both qualitative and quantitative metrics generally show that
combination methods give better results.

I. INTRODUCTION

The decisions of complex machine learning models like
deep neural networks are difficult to explain since one can only
directly observe their inputs and outputs. Not knowing what
the algorithm of these models is doing is widely referred to as
the black box phenomenon [1]. Interpretability techniques for
machine learning models are useful tools for understanding
what goes on inside this black box. Diverse applications
of interpretability include the medical field [2][3][4], natural
language processing [5], finance and genomics [6].

A common approach to model interpretation involves cal-
culating an attribution score for each feature based on its
contribution to the classification decision of the model. For
the purposes of this paper, the features are the pixels since
the application is image processing. The attribution scores
reveal the extent to which each pixel contributes to the overall
label prediction of a classifier. These scores are displayed
as a saliency map (or image map) in which each pixel is
set to a gray scale value based on its score. The saliency
map constitutes the attribution scores for each pixel The term
saliency map is also referred to as a sensitivity map, pixel
attribution or feature attribution. Throughout this paper, the
term “saliency map” will be used. Saliency mapping seeks
to provide a visual representation of how each pixel affects
the soft-max predictions or class activation scores of a neural
network.

Multiple methods for producing saliency maps have been
developed including SmoothGrad [7], Integrated Gradients
[8] and Guided Backprop [9]. In this paper, methods are
combined to produce better results. The goals of this paper
are to (1) evaluate these three existing methods of saliency

mapping and (2) configure combinations of each to produce
better results. Each technique is assessed using qualitative and
quantitative metrics. By evaluating the combinations as well
as prior methods, the aim is to provide ample evidence that
these methods are accurate and valuable for understanding the
decisions produced by neural networks.

II. METHODS

This section gives a description of three developed methods
and the new combination techniques of this paper.

A. SmoothGrad
The SmoothGrad method [7] uses the “Vanilla Gradient”,

which assigns attribution scores (denoted as Mc(x)) to each
pixel by taking the partial derivative of the class activation
score for class c (denoted as Sc(x) with respect to the image
x [10] as given in Eq. (1).

Mc(x) =
∂Sc(x)

∂x
(1)

This establishes the gradient saliency map Mc(x). Equation (2)
[7] defines the smooth gradient M̂c(x) as

M̂c(x) =
1

n

n∑
i=1

Mci(x+N(0, σ2)) (2)

where Mci denotes the ith noisy sample of Mc(x) formed by
adding Gaussian noise with mean 0 and a standard deviation
of σ to Mc(x). A total of n noisy samples are averaged to
form the smooth gradient or SmoothGrad saliency map M̂c(x).
The implementation in this paper uses 15 noisy samples and
σ = 0.15 as given in Eq. (2).

B. Integrated Gradients
The Integrated Gradients approach [8] uses multiple images

along a straight line path between a baseline image x′ and the
input image x in order to compute the saliency map as given
in Eq. (3). The gradient of each of these images along the path
is computed. The Integrated Gradient is defined to be the path
integral of the gradients along this straight line path [8]. The
integrated gradient along the ith dimension (or equivalently
the ith pixel) is defined in Eq. (3)

IntegratedGradsi(x) =

(xi − x′i)×
∫ 1

α=0

∂Sc(x
′ + α× (x− x′))

∂xi
dα (3)



where ∂Sc(x)
∂xi

is the gradient along the ith dimension and ×
denotes the cross product. This method requires no modifi-
cation to the original network and is simple to implement in
that the integral is approximated as the sum of the gradients at
points occurring at sufficiently small intervals along the path
between x′ and x [8]. The implementation in this paper uses
50 steps to approximate the integral given in Eq. (3).

C. Guided Backprop

Guided Backprop builds on prior work in back-propagation
[11] and “Deconvnet” [12]. Guided Backprop and back-
propagation calculate attribution scores layer by layer starting
at the output and working back through the layers of a neural
network. In contrast to back-propagation, Guided Backprop
incorporates “Deconvnet” into its calculation at specific layers.
Guided Backprop is defined in Eq. (4) and Eq. (5) [9].

Rli(x) = (f li (x) > 0) · (Rl+1
i (x) > 0) ·Rl+1

i (x) (4)

Rl+1
i (x) =

∂fout(x)

∂f l+1
i (x)

(5)

These equations define how the attribution scores are ac-
quired where R represents the saliency map, x is the input
image, l denotes the layer of the neural network being cal-
culated and i is the individual neuron in that layer. In both
equations f is the activation score of each neuron, which is
stored during the forward pass of the image x through the
network. Also, fout is the activation score at the output of the
network and is equivalent to Sc as defined in the SmoothGrad
method (see Eq. (1)).

Equation (4) describes the guided back-propagation for
calculating the saliency map at layer l. The map is obtained by
multiplying the saliency map at layer l+1 by f at layer l (with
all negative values replaced by zero) and R values at layer
l+1 (with all negative values replaced by zero). Equation (5)
is the forward pass that finds the saliency map at layer l + 1
as the partial derivative of the output layer neuron activation
with respect to the neuron activation at layer l + 1 for each
pixel of the image x. Note that this equation is analogous to
the ”Vanilla Gradient” from Eq. (1), except that this approach
takes a layer by layer approach. The method allows for the
approximation of the gradient at any layer.

D. SmoothGrad For Noise Tunnelling

This method of combining SmoothGrad with other methods
(often referred to as noise tunneling) provides an average of
multiple saliency maps generated using the same mapping al-
gorithm over several noisy inputs [7]. It follows the same basic
premise as Eq. (2), except that Mc is replaced with another
saliency map. Equations (6) and (7) show how this is done for
Integrated Gradients and Guided Backprop respectively. These
two combination methods are called Smoothed Integrated
Gradients and Smoothed Guided Backprop respectively. Each
of these methods simply takes an average of the attribution
scores from n noisy samples. An issue with computation time
arises due to the need for multiple passes through the neural

network and is a relatively intensive approach like Integrated
Gradients.

ˆIntegratedGradsi(x) =
1

n

n∑
1

IntegratedGradsi(x+N(0, σ2))

(6)

R̂li(x) =
1

n

n∑
1

Rli(x+N(0, σ2)) (7)

E. Combination Methods Based on Gradient Replacement

For the combinational methods proposed in this paper, the
idea is to take the integral of any saliency mapping method to
be combined. This is equivalent to combining Integrated Gra-
dients with SmoothGrad and Guided Backprop as described
by Eqs. (8) and (9) respectively. Note that Eq. (8) differs from
Eq. (3) in that the former uses the smooth gradient which is
not used by the latter. These two methods are called Integrated
SmoothGrad and Integrated Guided Backprop respectively.
The approaches have the same issue as those in Section II-D in
that multiple passes through the network are needed. However,
replacing the gradient in Integrated Gradients can improve the
results obtained since there is an error introduced by every
gradient approximation. The motivation is that there is less
error introduced by gradient replacement resulting in more
accurate saliency maps.

IntSmoothGradsi(x) = (xi−x′i)×
∫ 1

α=0

M̂c(x
′+α×(x−x′))dα

(8)

IntegratedGBPi(x) = (xi−x′i)×
∫ 1

α=0

Rli(x
′+α×(x−x′))dα

(9)

III. EXPERIMENTAL PROTOCOL

Assessing the accuracy of interpretability techniques is an
ongoing challenge largely due to the fact that there is no
ground truth for saliency maps to compare against. In order
to provide a broad evaluation, both qualitative and quantitative
assessments are performed. Qualitative evaluation is important
since interpretability is largely about expressing the results of
a complex learning model to a human in a form one can under-
stand. Quantitative assessment is also significant as one must
assess whether the saliency maps are accurate in depicting
which pixels are relatively more important than others. Both
assessments use images from the MNIST handwritten digit
database [13], CIFAR10 [14] and Tiny ImageNet [15].

In papers that propose interpretability techniques, qualitative
evaluation has been the primary tool for assessing saliency
maps [7][8][9][10][16][17]. In this paper, the qualitative eval-
uation focuses on two aspects, namely, visual coherence and
edge differentiation. Visual coherence assesses how accurately
the map highlights the object of interest and how much
spillover there is into the background. Edge differentiation



Fig. 1. Model architecture for training and evaluation on the MNIST dataset.

assesses how visibly contrasted the edges of the object are in
the saliency map. This is valuable since some objects may not
be highlighted by the saliency map but may be recognizable
if the edges of the object are still clearly defined.

Quantitative evaluation provides an objective measure of
how much the highlighted pixels contribute to the final
classification score of the neural network. There currently
exist multiple quantitative evaluation techniques which seek to
evaluate the accuracy of saliency maps [3][18][19][20]. There
is currently no consensus on which quantitative evaluation
technique is the most accurate. In this paper, the evaluation
uses RemOve And Retrain (ROAR) [18].

The class activation scores of the output layer of the image
classifier is used to assess the saliency maps. The model with
architecture given in Fig. 1 is used for MNIST. The ResNet18
architecture [21] is used for CIFAR10 and Tiny ImageNet.
The output layer of the neural network outputs a classification
score or softmax output. The label with the highest associated
class activation score is chosen as the predicted output label
of each classifier. The score depicts the confidence that the
classifier has in each prediction. This allows one to assess
whether removing the pixels which are important (according
to the saliency map) brings about a change in class activation
scores. The setup replaces each pixel with the image mean.
This degraded image results in a drop in the scores. Similarly,
a drop in scores results when the image is degraded based
on replacing each pixel by a random value. The removed
information in the degraded images are not accounted for in
the training of the model. The class activation scores of the
degraded image are not accurate. Hence, the model is retrained
according to the ROAR method.

The model is trained on ten different sets of data, each with
varying levels of noise described by a parameter t starting
at 0.0 (no pixels removed) to t = 0.9 (90% of the pixels
removed). The models trained for the lower noise levels of
t = 0.0 to t = 0.4 had a validation set accuracy of above 98%
for the MNIST dataset. The validation set accuracy decreased
to 97% (t = 0.5), 96% (t = 0.6), and 95% (t = 0.7). A
larger drop of 91% occurred at t = 0.8 and a significantly
diminished accuracy of 74% was achieved at t = 0.9.

The removed pixels were chosen at random, meaning that
the retrained model scores should be minimally affected by
the removal of random pixels, but should still be affected
by the selective removal of significant pixels. For MNIST,
retraining of the model produced a class activation score of

MNIST CFAR10 Tiny
ImageNet

Vanilla Gradient Very Low Medium Very Low
Grad × Input Very High Very Low Low
SmoothGrad Medium High Medium

Integrated Gradients Very Low Very Low Medium
Guided Backprop Low Low High

Smoothed Integrated Gradients High Low Medium
Smoothed Guided Backprop Very Low Medium Very High

Integrated SmoothGrad? Medium Low Medium
Integrated Guided Baxkprop? Low Very Low Medium

TABLE I
VISUAL COHERENCE OF SALIENCY MAPPING METHODS ON ALL THREE

DATASETS. EACH METHOD IS EVALUATED ON A SCALE FROM VERY LOW
TO VERY HIGH. THE ? INDICATES THE NEW PROPOSED METHODS.

1.0 for degradation levels from t = 0.1 to t = 0.8. For a
degradation level of t = 0.9, the model has less confidence,
mainly due to the lack of information provided by the high
level of degradation of the images during both training and
evaluation. When evaluating the saliency maps, one must
take into account these scores so that one does not attribute
score changes which occur during random degradation to the
degradation determined by the map. The same phenomenon is
observed for the CIFAR10 and Tiny ImageNet data.

IV. RESULTS AND DISCUSSION

Results are presented for the (1) Vanilla Gradient (defined
in Eq. (1)), (2) Grad x Input, (3) the benchmark methods and
combination techniques and (4) the new proposed combina-
tion methods Integrated SmoothGrad and Integrated Guided
Backprop. The Grad x input approach is a commonly used
technique which is an elementwise product of the Vanilla
Gradient and the input image [22].

A. Qualitative Evaluation

Qualitative evaluation largely focuses on the human inter-
pretability aspect of the attribution map as exemplified by
visual coherence and edge differentiation. A ”good” saliency
map is depicted by both these aspects. A strong visual co-
herence is achieved when the object of interest is clearly
differentiated and recognizable to a human and that the im-
portant pixels are concentrated within that object with sharp
edges and little to no spillover into the background. A strong
edge differentiation is achieved if the observer can easily
differentiate the object of interest from the rest of the image.

A visual coherence evaluation of each saliency method on
all three datasets can be found in Table I. The visual coherence
of each method varies from dataset to dataset. This is likely
due to differences in the dataset images and differences in the
model architecture. Overall, Smoothgrad performed the best
on average over the three datasets.

The evaluation of edge differentiation is depicted in Table II.
There is less variation within the results of this evaluation.
The largest differences are between MNIST and the other two
datasets. This is likely due to the different model architecture
used on MNIST. The SmoothGrad, Smoothed Integrated Gra-
dients and Smoothed Guided Backprop approaches performed
the best on average.



MNIST CFAR10 Tiny
ImageNet

Vanilla Gradient Very Low Low Very Low
Grad × Input Very High Low Low
SmoothGrad Medium Medium High

Integrated Gradients Medium Low Low
Guided Backprop Very Low Medium Very High

Smoothed Integrated Gradients High High Medium
Smoothed Guided Backprop Low High Very High

Integrated SmoothGrad? Medium Low Medium
Integrated Guided Baxkprop? Low Very Low Low

TABLE II
EDGE DIFFERENTIATION OF SALIENCY MAPPING METHODS ON ALL THREE

DATASETS. EACH METHOD IS EVALUATED ON A SCALE FROM VERY LOW
TO VERY HIGH. THE ? INDICATES THE NEW PROPOSED METHODS.

Fig. 2. Average of the softmax class activation scores for the ground truth
class label versus image degradation level for 500 MNIST images. Individual
(left) and combinatorial (right) methods with a random map as a baseline.
The ? indicates the new proposed methods.

B. Quantitative Evaluation

For quantitative evaluations of saliency maps, one must
define what different results mean on a retrained model. In
an ideal scenario, a saliency map perfectly ranks each pixel
according to its relative contribution to the class activation
score and therefore, every degraded image would ideally get
a class activation score of 0.0. This is the case even though
the images with larger amounts of degradation have imperfect
scores. The worst case scenario for saliency map accuracy
would be a completely random map which should give approx-
imately a class activation score of 1.0 on the MNIST dataset.
Due to the decrease in activation scores at the higher levels of
degradation for a random map, the higher levels of degradation
will provide relatively less accurate results compared to the
lower levels of degradation. A random map score in each of
the graphs in Figs. 2, 3 and 4 can be used as a reference against
the scores for each saliency mapping method. In obtaining the
results, the model is retrained for each level of degradation. A
highly accurate saliency map should continually decrease class
activation scores as the degradation level increases. As the
random map scores decrease, there is more error introduced
into the evaluation at that level of degradation. The maps
which decrease class activation scores the fastest and to the
largest extent are considered the most accurate according to
the proposed assessment.

Fig. 3. Average of ResNet18 class activation scores for the ground truth class
label versus image degradation level for 100 CIFAR10 images. Individual
(left) and combinatorial (right) methods with a random map as a baseline.
The ? indicates the new proposed methods.

Fig. 4. Average of ResNet18 class activation scores for the ground truth
class label versus image degradation level for 100 Tiny ImageNet images.
Individual (left) and combinatorial (right) saliency mapping methods with a
random map as a baseline. The ? indicates the new proposed methods.

Based on the results from Figs. 2, 3 and 4, the methods
which perform the best on average for all three datasets (for
the ROAR evaluation) are SmoothGrad, Smoothed Guided
Backprop and Integrated Guided Backprop.

V. SUMMARY AND CONCLUSIONS

There is minimal correlation between the qualitative and
quantitative assessments of each saliency mapping method.
There is also some variation among these methods with regard
to how well they perform on each dataset. The Smooth-
Grad and Smoothed Guided Backprop approaches performed
well on both the qualitative and quantitative evaluations.
The Smoothed Integrated Gradients and Integrated Guided
Backprop performed well on the qualitative and quantita-
tive assessments respectively. The evaluation of these recent
saliency mapping techniques and their combinations provides
a reference for further research into new applications.
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