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Abstract—First-day mortality prediction is a critical task in
the Intensive Care Unit (ICU), as it can help clinicians identify
which patients are at the highest risk for death and thus may
need more intensive care. Many heuristic-based metrics for first-
day mortality exist. However many signals exist in the Electronic
Health Record (EHR) that are not used in these metrics. For
the implementation of these metrics, it is important to keep
the number of required signals as small as possible so that the
user can quickly receive an assessment of their patient. In this
paper, we leverage techniques from classical machine learning to
compare sets of signals from a patients record (like demographic
information, lab values, and vital sign measurements) to find the
minimum feature set that best informs first day mortality. We
compare several feature selection techniques to identify various
feature sets with differing number of features. We found that
Elastic Net was the overall best performing method and was
able to reach the same performance as the current state of the
art with less than half the features. This suggests that an optimal
feature set is clinically meaningful.

Index Terms—Machine Learning, Healthcare, Human-centred
design.

I. INTRODUCTION

The use of machine learning in today’s healthcare systems is
rapidly growing as many new techniques are being developed
with applications including predicting illnesses, determining
the most effective treatments, making quicker and more ac-
curate diagnosis, and many more [1]. The growing demand
for more personalized healthcare is becoming an increasingly
pressing need. It is imperative that the methods created today
are precise in their input. Until Electronic Health Record
(EHR) integration can be achieved, we cannot expect users to
enter large swaths of data for each prediction. The following
research will focus on utilizing machine learning and various
feature selection techniques in order to more efficiently and
accurately predict mortality in the Intensive Care Unit (ICU).

Feature selection is the process of reducing the number
of input signals such that the most relevant attributes are
used to create a predictive model [2]. There are a total of
194 features within the eICU database [3]. Therefore, it is
imperative that this number is greatly reduced to not burden

the user. Having excess tests or features not only slows down
the time it takes to collect and enter the data, but also can
have a negative impact on the results of the prediction [4].
Having the ability to decrease the number of features used
while maintaining a relative measurement of success is crucial
for this experimentation and is the motivation behind using
feature selection for this research.

Feature selection can be further classified as either super-
vised or unsupervised. In an unsupervised method, the function
is provided inputs, but no target function. The goal is to
identify the most relevant features in the input dataset. This
can be achieved by calculating the correlation with the target
variable, or by applying feature-specific statistical tests (such
as t-tests). Supervised methods, on the other hand, have the
goal of identifying the most relevant features in order to
improve the performance of a target function. This can be
done by using a training dataset, where the target output is
known. The features that correlate with the target variable
are identified and used to optimize the target function. In
this work, the filter, wrapper, and embedded methods under
supervised feature selection will be utilized.

Filter methods are those that are typically performed during
the preprocessing stage of feature selection. For this method,
the features are chosen based on certain characteristics or
scores that they achieve in various statistical tests. Some of the
most popular examples of filter methods include correlation,
Chi-Square tests, and analysis of variance (also known as
ANOVA) [5]. The features are then sorted based on their scores
and a threshold is chosen either by heuristic or statistics to
choose the final set of features.

Wrapper methods are those that evaluate various subsets
and combinations of features in order to choose the one
that produces the best result for the given algorithm. These
methods are often referred to as greedy due to the fact that
they search through all subsets and therefore can become
computationally expensive and take a long time to execute.
The benefit of this method is that it is guaranteed to provide
the optimal set of features. The process of utilizing a wrapper



method starts with choosing a search method or technique in
order to select an available subset of features. Once the subset
is identified, the desired machine learning algorithm is trained
on the chosen subset. The model is then evaluated and the
process is repeated with various other subsets of features until
the best model is identified. Popular search methods include
forward selection, backward elimination, and bi-directional
searches [6].

For embedded methods, as the name suggests, the feature
selection is embedded within the training of the model. In
the previous two methods, feature selection was performed
before the model was trained. The process of the embedded
method includes training a machine learning model and then
deriving the feature importance from the model. As the model
is being trained, the features that have the least impact on
the prediction are discarded. Examples of embedded methods
include lasso/ridge regression and decision trees [6].

The dataset utilized in this work is the eICU database [3].
This database is a synthesis of data collected from many criti-
cal care units throughout the United States. We have identified
194 different features of different types, such as: lab tests,
demographic data, disease/disorder indicator variables, and
vital signs. For this analysis we collected 145,000 instances
along with their mortality outcome.

In this paper, we seek to build off of prior research in
this area in order to identify the smallest set of features that
can be used to predict mortality in ICU patients with high
performance [7]. This work will be useful in determining
high-risk patients who may benefit from closer monitoring or
more aggressive treatment. We would like to use this work
to challenge clinician opinion on the importance of several
popular first-day metrics in determining mortality outcomes.

II. METHODS

Our analysis consists of three components. First, an eval-
uation of the dataset with all 194 features is done. Second,
a 1-1 comparison is made with our prior work by selecting
the 20 features using each feature selection technique. Lastly,
a quantitative and qualitative study of the performance of
each feature selection method is compared. The following
techniques were evaluated: variance threshold, Analysis of
Variance (ANOVA), Mutual Information (MI), Recursive Fea-
ture Elimination (RFE), Elastic Net, and Principle Component
Analysis (PCA).

The variance threshold method is a simple, baseline ap-
proach to feature selection. It removes any feature that has
a variance less than a chosen threshold. By default, this
technique eliminates features with zero variance, but can
be changed to any desired threshold value. Features with
little to no variance may often not contain much significant
information and can in some instances reduce the overall
performance of a model. Since this method is dependent on
the statistics of the feature, this method must be performed
before standardizing the data [8].

The Analysis of Variance method, often referred to as
ANOVA, is a widely popular filter method. For this project, the

ANOVA f-test statistic was utilized. The ANOVA technique is
used to determine how similar or different the means of two
or more variables are to each other. It can also be utilized to
realize the correlation between an independent variable and the
dependent variable. Using the ANOVA method, f-scores are
assigned to each feature where the higher the f-score indicates
a higher correlation between that particular feature and its
impact on the output [5].

Shannon Mutual Information between two random variables
is defined by conditional entropy. Entropy of the class variable,
Y, is desired to be very low in order to maximize classification
performance. For a given feature X, Mutual Information
between X and Y is a measure of the change in entropy of
Y due to the presence of X as defined in Equation 1. In this
equation, p(xy) is the joint probability of x and y and p(x) and
p(y) are the marginal probabilities. Therefore, a high Mutual
Information between a feature and the class label indicates
that the feature is a good predictor of the class label [9].

I(X;Y ) =
∑
xϵX

∑
yϵY

p(xy) log

(
p(xy)

p(x)p(y)

)
(1)

Recursive Feature Elimination (RFE) is a wrapper-type fea-
ture selection algorithm. It operates by first building a model
on a dataset containing all features and then computing an
importance score for the features using the model (ROC AUC
for our case). Next, a set of features are removed, the model
is retrained and the outputs are an updated importance score
on the reduced feature set. This process is then repeated until
all the least important features, determined by the importance
score from the model, are eliminated. RFE requires two inputs
to operate; number of k features to keep and an estimator
model with a built-in importance score [8].

TABLE I
STATISTICS FOR CLASSIFIER TRAINED ON ALL 194 FEATURES.

Measurement Mean Standard Error
Accuracy 0.855106 0.002542
Precision 0.260902 0.003493

Sensitivity 0.819577 0.008339
Specificity 0.857289 0.002884
ROC AUC 0.918066 0.002748
PRC AUC 0.507141 0.009412

Balanced Accuracy 0.838433 0.003765

To find the k number of features to keep, RFE with cross
validation (RFECV) can be utilized. RFECV keeps track of a
score computed from the model for a given number of features.
Using logistic regression as the model for RFECV and tracking
the ROC AUC score, the number of features to keep was based
on the specifications from previous Work [10].

The following parameters were used; a five-fold stratified
for cross-validation, logistic regression as the estimator and
the area under the receiver operating characteristic curve (ROC
AUC) for scoring the performance of the estimator. The dataset
was divided into 33% testing (for scoring) and the remaining
was used for training the estimator.



Elastic net is an embedded type feature selection algorithm
that combines LASSO and RIDGE regression. Both LASSO
and RIDGE Regression use regularization to avoid overfitting.
Regularization achieves this by penalizing complex models by
adding a penalty to the following cost function, W in Equation
2. In this equation, yi is the target class for instance i, xij is
the feature value for instance i and feature number j and wj

is the corresponding weight value.

W =

N∑
i=1

yi −
M∑
j=0

wj x ij

2

(2)

RIDGE regression uses L2 regularization, which modifies
the cost function by adding a penalty term to the residual
sum of squares. Equation 3 shows the added penalty term of
lambda times the sum of square of weights, where N is the
total number of training instances and M is the total number
of input features.

W =

N∑
i=1

yi −
M∑
j=0

wj x ij

2

+ λ

M∑
j=0

w2
j (3)

For Least Absolute Shrinkage and Selection Operator or
LASSO regression, L1 regularization is used. This modifies
the cost function by adding a penalty term of lambda times
the sum of absolute value of weights to the residual sum of
squares. This is shown in Equation 4.

W =

N∑
i=1

yi −
M∑
j=0

wj x ij

2

+ λ

M∑
j=0

|wj | (4)

Finally, when combining the two penalty terms from
LASSO and Ridge in Elastic-Net, an additional α term is
added that determines the ratio of L1 to L2 regularization.
The Elastic-Net cost function is given in Equation 5.

W =
N∑
i=1

yi −
M∑
j=0

wj x ij

2

+αλ

M∑
j=0

|wj |+(1− α)λ

M∑
j=0

w2
j

(5)
The values of α and λ for Equation 5 can be computed using

elastic net with a cross validation (ElasticNetCV) function. A
list of α values was provided and the value of λ was picked
automatically from the ElasticNetCV function [8]. The value
of α was then chosen by performing a grid search on the
interval [0, 1]. The following parameter values were found to
be optimal: λ = 4.317e-4, α = 0.995.

Principal Component Analysis, more commonly known
as PCA, is an unsupervised method that can be used for
dimensionality reduction while having a maximum variability.
The overall goal is to make sure all of the of the transformed
features are linearly independent, as well as, finding compo-
nents in order of highest importance. The PCA approach can
be defined as the eigendecomposition of the covariance matrix
XTX.

TABLE II
COMPARISON OF FEATURE SELECTION TECHNIQUES. THE TOP 20

FEATURES ARE CHOSEN FROM EACH METHOD FOR A DIRECT COMPARISON
OF THE CLINICIAN CHOSEN FEATURES FROM THE PREVIOUS

STATE-OF-THE-ART [7]. THE METRIC REPORTED IS THE MEAN ROC AUC
FROM THE 10-FOLD CROSS VALIDATION AS WELL AS THE 95%

CONFIDENCE INTERVAL.

Method ROC AUC
Clinician Chosen [7] 0.8564± 0.002748
Variance Threshold 0.7661± 0.00747

ANOVA 0.8901± 0.00309
Mutual Information 0.8365± 0.00554

PCA 0.8980± 0.00302
ElasticNet 0.9056± 0.00336

Recursive Feature Elimination 0.8512± 0.00415

TABLE III
MINIMUM NUMBER OF FEATURES REQUIRED TO HAVE STATISTICALLY

SIGNIFICANT PERFORMANCE INCREASE OVER PREVIOUS
STATE-OF-THE-ART [7].

Method Number of features
Variance Threshold 102

ANOVA 13
Mutual Information 30

PCA 3
ElasticNet 6

Recursive Feature Elimination 26

There are five steps to complete the process of principal
component analysis. To begin with, the data must be stan-
dardized using Equation 6, where µ is the mean and σ is the
standard deviation of all features.

xstand =
x− µ

σ
(6)

The standardized data would then have a mean of 0 for
each feature while having a standard deviation of 1. Doing
this will scale all features properly and prevent skewing in the
results. Step 2 involves finding the covariance matrix of the
standardized data. Equation 7 was used to find the covariance
matrix where x̄i is the mean of the ith column, x̄j is the mean
of the jth column, xim is the ith column and xjm is the jth
column.

Cov (i, j) =
1

n− 1

n∑
m=1

(xim − x̄i) (xjm−̄xj) (7)

The resultant covariance matrix will be a square matrix
XTX. The next step was to find the eigenvectors and eigenval-
ues using eigendecomposition. After finding the eigenvalues,
the fourth step is to sort them and its corresponding eigen-
vectors in descending order. The fifth and final step is to
choose the number of components to keep from the highest
importance to then transform the standardized data into a
transformed matrix using Equation 8.

TR = XWR (8)

In Equation 8, TR is the transformed matrix, WR are the
loadings or eigenvectors, X is the standardized data, and R
itself is the number of components chosen.



TABLE IV
TOP 10 FEATURES SELECTED BY EACH METHOD AS COMPARED TO CLINICIAN OPINION. FR - FEATURE RANK.

FR Clinician Survey [7] Variance Threshold ANOVA Mutual Information Recursive Feature Elimination Elastic Net
1 Age CPK Lactate Lactate Potassium Lactate
2 Immunosuppresion AST (SGOT) GCS Motor Mechanical Ventilation paCO2 GCS Motor
3 HepaticFailure Lymphs GCS Eyes GCS Eyes pH paCO2
4 Lactate ALT (SGPT) GCS Verbal GCS Motor Myglobin Bicarbonate
5 Metastatic Cancer FiO2 Intubation GCS Verbal Lactate Fio2
6 Creatinine Glucose Ventilator Albumin Glucose BUN
7 Leukemia Platelets AST (SGOT) Age Respiratory Rate WBC
8 Platelet Akaline PT-INR Creatinine Chloride Mechanical Ventilation
9 Bilirubin PaO2 Anion Gap BUN Albumin Sodium
10 Aids Glucose ALT (SGPT) INR TV Age

III. EXPERIMENTAL PROTOCOL

For our first and second analyses, missing data was assumed
to be missing at random and features with missingness at
70% or greater were dropped from the dataset. Next, features
with pair-wise Pearson correlations greater than 0.9 were also
discarded. The data was then standardized and imputed with
multiple imputation [11]. To correct for the 95%-5% class
imbalance, we apply the Synthetic Minority Oversampling
(SMOTE) technique [12]. For each 20-feature set, we perform
a 10-fold cross validation and determine the mean ROC AUC
and 95% confidence interval. The classifier is a multi-layer
perceptron (MLP) with 2 hidden layers and SELU activations
[13]. The model is trained for 127 epochs using full-batch
stochastic gradient descent with a learning rate of 0.03104
and Nesterov momentum of 0.4204 [14]. The hyperparameter
values were obtained by performing Bayesian Optimization
using ROC AUC as the target metric [7].

For our third analysis, we want to consider all features.
Therefore we do not drop features based on missigness and
correlation. For each method, we choose an increasing number
of features and perform 10-fold cross validation to collect
a ROC AUC and 95% confidence interval. The rest of the
preprocessing procedure remains the same as the previous
analyses. This process results in 194 ROC AUC means and
95% confidence intervals. To quantitatively measure which
method performs the best, we compute the area under the
ROC AUC vs number of features curve. In addition, for each
method, we determine the minimum number of features that
can provide a statistically significant result over the work in
[7]. Lastly, we provide a qualitative measure of performance
by comparing the top selected features from each method
compared to clinician opinion [7]. Our baseline measure of
performance is to consider using all features. The performance
metrics for this baseline can be found in Table I. A link to
our code has been provided1.

IV. RESULTS AND DISCUSSION

In Table I, we show the target performance by using all
194 features. Next, we reduce the number of features to what
was used in the previous state-of-the-art [7], which is 20
features. The results for each method is shown in Table II.

1https://github.com/jrepifano/FeatureSelectionInTheICU

Fig. 1. 10 fold cross validated ROC AUC as a function of number of features
selected. The best performing method will have the highest area under the
curve.

Here, we observe that the top methods are ANOVA, PCA and
ElasticNet. When looking at the number of features required
to outperform the opinion of the clinicians (as in Table III),
we show that PCA and Elastic Net vastly do better than other
methods. This trend continues in Figure 1. The PCA approach
is quick to rise to a ROC AUC value of 0.89 but has trouble
increasing as more components are added. The best performing
method overall is Elastic Net due to it having the highest
ROC AUC value as features are increased as well as consistent
performance across the other experiments.

In Table IV, we show the top 10 features chosen by each
method and compare them to what is selected by ICU clini-
cians. In the clinician column, we observe a large amount of
indicator variables as opposed to the columns selected by fea-
ture selection. There are also many common features/feature
sets that are selected by multiple methods. These include: lac-
tate, GCS scores (Eyes/Motor/Verbal), mechanical ventilation,
and age. We postulate that this difference can be attributed
to clinician focus on comorbidities with our machine learning
models having no knowledge of diagnosis and patient history.
It is possible that the optimal feature set lies somewhere in
the combination of these methods. We defer the use of a meta
set of features selected by multiple methods for future work.

V. SUMMARY AND CONCLUSIONS

In our study, we provide a quantitative and qualitative
assessments of feature selection methods on the eICU first

https://github.com/jrepifano/FeatureSelectionInTheICU


day mortality dataset. We conclude that Elastic Net is the
overall top performing method and requires the fewest number
of features to match clinician performance while retaining the
original features. Finally, we conclude that there is a significant
difference in the types of features chosen by humans versus
machines. Humans tend to choose features that indicate the
presence of disease or comorbidities and the machines tend
to choose continuous lab based features. We postulate that the
optimal feature set may lie in the intersection of the sets of
features selected by these various methods.
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