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Abstract

Objective: To determine how well machine learning algorithms can classify mild cognitive impairment (MCI) subtypes
and Alzheimer’s disease (AD) using features obtained from the digital Clock Drawing Test (dCDT). Methods: dCDT
protocols were administered to 163 patients diagnosed with AD(n= 59), amnestic MCI (aMCI; n= 26), combined
mixed/dysexecutive MCI (mixed/dys MCI; n= 43), and patients without MCI (non-MCI; n= 35) using standard clock
drawing command and copy procedures, that is, draw the face of the clock, put in all of the numbers, and set the hands
for “10 after 11.” A digital pen and custom software recorded patient’s drawings. Three hundred and fifty features were
evaluated for maximum information/minimum redundancy. The best subset of features was used to train classification
models to determine diagnostic accuracy. Results: Neural network employing information theoretic feature selection
approaches achieved the best 2-group classification results with 10-fold cross validation accuracies at or above 83%,
that is, AD versus non-MCI= 91.42%; AD versus aMCI= 91.49%; AD versus mixed/dys MCI= 84.05%; aMCI versus
mixed/dys MCI= 84.11%; aMCI versus non-MCI= 83.44%; and mixed/dys MCI versus non-MCI= 85.42%. A follow-
up two-group non-MCI versus all MCI patients analysis yielded comparable results (83.69%). Two-group classification
analyses were achieved with 25–125 dCDT features depending on group classification. Three- and four-group analyses
yielded lower but still promising levels of classification accuracy. Conclusion: Early identification of emergent
neurodegenerative illness is criterial for better disease management. Applying machine learning to standard
neuropsychological tests promises to be an effective first line screening method for classification of non-MCI and MCI
subtypes. (JINS, 2020, xx, xx-xx)

Keywords: Clock drawing, The Digital Clock Drawing Test, Mild cognitive impairment, Machine learning, Cognitive
assessment

INTRODUCTION

Alzheimer’s disease (AD) is a major public health problem;
by 2050, it is estimated that 14million people may be affected
by this illness (Alzheimer’s Association, 2019). There is con-
siderable interest in the diagnosis and characterization of mild
cognitive impairment (MCI), a syndrome believed to be a
prodrome often leading to dementia. A variety of MCI sub-
types have been identified, including patients presenting with
single-domain syndromes such as amnestic (aMCI) and

dysexecutive (dys MCI) and a combined or mixed (mixed
MCI) phenotype (Emrani et al., 2019; Eppig et al., 2012;
Libon et al., 2011). Past research suggests varying rates of
conversion to dementia and reversion to normal
cognitive functioning depending on MCI subtype (Aerts
et al., 2017; Díaz-Mardomingo, García-Herranz, Rodríguez-
Fernández, Venero, & Peraita, 2017; Pandya, Lacritz,
Weiner, Deschner, & Woon, 2017; Shimada, Doi, Lee, &
Makizako, 2019). There is some suggestion that MCI sub-
types are associated with different underlying biological
mechanisms. Thus, as disease-modifying agents become
available, the differentiation between MCI subtypes will
become increasingly important for disease management,
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better understanding of the course of the illness, and predict-
ing possible treatment outcomes. The development of
machine learning-assisted tools for detecting emerging
neurodegenerative illness with appropriate specificity may
be able to address these needs.

The Clock Drawing Test (CDT) is a popular and widely
used neuropsychological test (Rabin, Barr, & Burton, 2005).
Over the past several decades, there has been considerable
research regarding differing patterns of performance on the
CDT among patients with various dementia and MCI syn-
dromes (Ahmed et al., 2016; Cahn-Weiner et al., 2003;
Cosentino, Jefferson, Chute, Kaplan, & Libon, 2004;
Freedman et al., 1994; Libon, Malamut, Swenson, Sands, &
Cloud, 1996; Price et al., 2011; Rouleau, Salmon, Butters,
Kennedy, & McGuire, 1992; Royall, Cordes, & Polk, 1998;
Royall, Palmer, & Markides, 2017; Schillerstrom et al.,
2007; Shulman, 1993; Tuokko, Hadjistavropoulos, Miller, &
Beattie, 1992). In the aggregate, prior research has demon-
strated that clock drawing to command versus copying amodel
of a clock produces complementary, but different patterns of
performance associated with different underlying neurocogni-
tive constructs (Ahmed et al., 2016; Cosentino et al., 2004;
Libon et al., 1996; Price et al., 2011).

The CDT is also used as part of other tests such as the
Montreal Cognitive Assessment (Nasreddine et al., 2005) and
the Mini-Cog (Holsinger et al., 2015), tests that are now com-
monly used to screen for neuropsychological impairment in
primary health settings. Brief screening measures for cognitive
change have previously been noted for their limited intra-
individual reliability (Feeney et al., 2016). Additionally,
cognitive screeningmeasures have been shown to be influenced
by baseline intelligence measured on word-reading tasks,
indicating that an individual’s performance on traditional
screening measures should be considered with respect to their
premorbid abilities (Dykiert et al., 2016). To the extent that
the CDT is used to screen for cognitive impairments, additional
potential limitations include the subjectivity of various scoring
systems, and the ability to score or capture only a small or
limited number of features that might reveal the presence of
early or emergent cognitive impairment.

A digital version of the CDT has recently been developed at
the Lahey Clinic and Massachusetts Institute of Technology
(Davis et al., 2010; Penney, Davis, et al., 2010; Penney,
Libon, et al., 2010) that combines traditional paper and pen
administration procedures using a digital pen and software that
captures the patient’s drawing in real time, allowing the obser-
vation of previously difficult-to-capture behavior. This technol-
ogy has been used with both patients and healthy research
participants. Libon et al. (2014) administered the digital
Clock Drawing Test (dCDT) to patients with multiple sclerosis
(MS) to investigate the bradyphrenia often seen in this patient
group. In both the command and copy conditions, MS patients
produced slower latencies during the latter portion of their
drawings, suggesting problems with sustaining attention and
concentration. Cohen et al. (2014) obtained dCDT protocols
from patients diagnosed with major depression and found that
younger patients spent a smaller proportion of time actually

drawing, relative to non-drawing time, compared to the older
depressed group. These datawere thought to reflect the presence
of excessive rumination in patients with depression. Lamar et al.
(2016) examined non-demented, non-depressed adults who
were grouped on the basis of whether the four cardinal anchor
digits (i.e., the numbers 12, 6, 3, 9) were initially drawn before
other digits. Local-level connectome analyses found that
anchorers demonstrated superior efficiency in the left medial
orbitofrontal and transverse temporal cortices as well as the right
rostral anterior cingulate and superior frontal gyrus versus
non-anchorers. Hierarchical modularity analyses suggested a
higher degree of modular integration involving heteromodal
regions of the ventral visual processing stream for anchorers
versus non-anchorers.

Using machine learning algorithms, Davis et al. (2014)
demonstrated that the dCDT was able to differentiate patients
with AD and other dementia syndromes from normal controls
(NCs). Finally, Souillard-Mandar et al. (2016) extracted dig-
ital clock drawing data from healthy controls, patients with
MCI, patients with several dementia syndromes, and other
groups and demonstrated impressive classification rates
using several machine learning techniques. In sum, past
research using the dCDT has demonstrated that this technol-
ogy is able to measure very subtle and discrete behavior
involving latency, decision-making, and graphomotor
output – behavior previously unobtainable – to aid in the
differential classification between dementia subtypes.

A question that has not yet been explored is how well the
dCDT can differentiate between patients classified with
various MCI subtypes and dementia such as AD when fea-
tures extracted from the test are used to train an automated
machine learning-based classifier. The current research aims
to address this issue. In the current research, the dCDT was
administered to memory clinic patients meeting criteria for
non-MCI, amnestic MCI, and a combined mixed/dys MCI
using Jak, Bondi criteria (2009), and patients diagnosed clin-
ically with AD. Our goal was to assess how well machine
learning data analytic algorithms – trained with optimally
selected features mathematically deemed to be most inform-
ative – are able to classify patients into their respective
groups. The ability of machine learning algorithms to differ-
entiate between patient groups could potentially increase the
usefulness of the CDT to screen for neuropsychological
impairment in primary care or other healthcare settings.

METHODS

Participants

The study cohort consisted of 163 patients (92 female; 162
Caucasian). All patients were evaluated at The Memory
Assessment Program, Rowan University, New Jersey Institute
for Successful Aging; and at the Department of Neurology,
Drexel University, Pennsylvania. Rowan University and
Drexel University institutional review boards approved this
investigation and the current research complied with the
Declaration of Helsinki. All data were collected between
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2005 and 2018. The work-up for MCI and dementia was iden-
tical between research sites and included comprehensive neuro-
psychological assessment, evaluations provided by a board-
certified geriatric psychiatrist or neurologist, a brain MRI/CT
scan, and serum blood tests. An interdisciplinary team consist-
ing of a neuropsychologist, psychiatrist/or neurologist, and
social worker determined clinical diagnosis. Exclusion criteria
included any lifetime history of head injury, substance abuse,
major/medical psychiatric disorders (e.g., major depression
and epilepsy), B12, folate, or thyroid deficiency. The presence
of these issues was determined on the basis of information
provided by both patients and their families and was deemed
positive if any of these issues interfered with work or other
aspects of daily life. Any changes in functional independence
in connection with a blow or strike to the head were considered
indicative of history of head injury. All neuropsychological
evaluations were obtained by one of us (DJL, a PhD level,
broad-certified neuropsychologist). A knowledgeable family
member provided information regarding functional status.
Demographic and clinical characteristics including age, educa-
tion, and Mini-Mental State Exam Performance (MMSE;
Folstein, Folstein, & McHugh, 1975) are displayed in Table 1.

Neuropsychological Assessment

The neuropsychological protocol used to clinically diagnose
non-MCI and MCI patients is identical as described by
Emrani et al., (2018). Three domains of neuropsychological
functioning were assessed including executive control,
naming/lexical access, and verbal episodic memory. Nine
neuropsychological parameters, three from each neurocogni-
tive domain, were employed to classify patients as presenting
with non-MCI or MCI subtypes as described below. Tests
were expressed as z-scores derived from normative data as
listed below.

Executive control

The Boston Revision of the Wechsler Memory Scale-Mental
Control subtest-Accuracy Index (see Lamar, Price, Cynthia,
Kaplan, & Libon, 2002 for full details); letter verbal fluency
(‘FAS’; Spreen & Strauss, 1990); and Trail Making Test-Part
B (Reitan & Wolfson, 1985).

Lexical access/language

The 60-item Boston Naming Test (Kaplan, Goodglass, &
Weintraub, 1983); semantic (‘animals’) fluency (Carew,
Lamar, Cloud, Grossman, & Libon, 1997); and Wechsler
Adult Intelligence Scale-III Similarities subtest (Wechsler,
1997).

Memory and learning

Episodic memory was assessed with three parameters
obtained from the 9-word California Verbal Learning Test
short form (Delis, Kramer, Kaplan, & Ober, 2000) including
total immediate free recall, delayed free recall, and the
delayed recognition discriminability index.

Diagnostic Determination

Alzheimer’s disease

All AD patients were assessed at Rowan University Memory
Assessment Program and diagnosed using the criteria sug-
gested by McKhann et al. (1984).

Single- and multi-domain MCI

Jak, Bondi et al. (2009) comprehensive neuropsychological
criteria were used to determine MCI subtype. Single-domain
MCI syndromes were diagnosed when scores fell below 1.0
standard deviation (SD) below expectations based on avail-
able norms on any two of the three measures within a single
cognitive domain. Mixed MCI syndromes were diagnosed
when scores fell below 1.0 SD below available norms on
any two of the three measures across two or more cognitive
domains. Twenty-six patients met criteria for single-domain
aMCI, fifteen patients for dys MCI, and twenty-eight for
mixed or multi-domain mild cognitive impairment (mixed
MCI). Because of the small number of dys MCI patients, a
combined mixed/dys MCI subgroup (n= 43) was con-
structed. Supporting this decision, previous research employ-
ing these criteria has shown that statistically defined mixed
and single-domain dys MCI patients produce similar patterns
of performance on executive tests (Eppig et al., 2012).

Table 1. Demographic information (means and standard deviations)

Non-MCI aMCI Mixed/dys AD

(n= 35) (n= 26) MCI (n= 43) (n= 59)

Age (SD) 77.10 (6.66) 75.85 (6.57) 75.48 (7.78) 79.71 (5.34)
Gender (%female) 51.43 76.92 55.81 50.85
Education (SD) 14.46 (2.85) 14.54 (2.75) 13.07 (3.00) 13.45 (2.91)
MMSE (SD) 27.24 (3.15) 26.58 (2.44) 26.77 (1.84) 22.96 (2.87)

Note: With the exception of one, all study participants were Caucasian.
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Non-MCI group

Thirty-five patients did not meet Jak, Bondi et al. (2009)
criteria for MCI. Some of these individuals (n= 11) obtained
scores where all nine neuropsychological parameters were
above 1 SD below mean cutoff criteria. The second group
of patients (n= 24) not meeting criteria for MCI presented
with some, but very little, cognitive impairment, such that
14 patients produced tests scores in which only one of the
nine neuropsychological parameters was below 1 SD and
10 patients produced neuropsychological test scores in which
only two parameters across different domains of cognitive
functioning were below 1 SD. These patients were combined
into a single group and labeled as non-MCI.

The Digital Clock Drawing Test

The instructions used to administer the dCDT are consistent
with traditional CDT administration and included both a
command and copy test conditions. In the command condi-
tion, patients were asked, “draw the face of a clock, put in
all numbers, and set the hands for 10 after 11.” Upon
completion of the command test condition, the copy test
condition was administered whereby patients were asked
to copy a model of a clock with hands set for 10 after 11.
The dCDT (Davis et al., 2010; Penney, Davis, et al., 2010)
was developed by the Lahey Clinic and Massachusetts
Institute of Technology in collaboration with the ClockSketch
Consortium and uses digital pen technology developed by
Anoto, Inc., Westborough, MA, USA. The pen works as an
ordinary ball point pen while capturing pen position 80 times/
sec. þ .002. All data are time-stamped, allowing the pen to
capture the final drawing for more accurate classification than
would be possible without this technology. The Clocksketch
program can label and calculate latencies for the length and
number of strokes associated with individual clock components
such as digits and hands; the dimensions and orientation of the
clock face, digits, and hands; the time elapsed during and
between the drawing of individual clock features; and the
deviation of clock features from “ideal” placement on the
command clock stimulus.

Data Preprocessing

Prior to formal analysis, all dCDT data underwent prepro-
cessing to remove duplicate features, noisy features, and
extremely sparse features, that is, those that are only available
for a very small subset of the patients (such as clock drawing
center dot and related features). All feature values were
standardized by subtracting the mean and dividing with
the SD of that feature obtained from the total sample.
Standardization allows the down-stream processing to be
independent of scaling and amplitude.

Information theoretic approaches for feature selection
evaluate mutual information (MI) among classifier variables
to identify and reduce the number of features with shared
predictive contributions. These approaches were based on

discrete outcome probabilities, that is, to augment the selec-
tion of predictive features, continuous values were converted
to discrete, categorical values in order to better isolate MI
contributed by these features. All continuous valued
features were discretized by binning data into 10 bins using
the discretization function in Gavin Brown’s FEAST toolbox
for Matlab® (Brown, 2009). The process of binning divides
continuous values into N= 10 categorical values, where all
N bins have equal ranges.

For some patients, features of interest were missing such
as the absence of a clock hand or digit within the clock
face. To resolve issues revolving around missing features,
a k-nearest neighbor (kNN) algorithm was used to impute
the missing values. For any missing feature, kNN searches
the k nearest neighbors of available features with respect to
Euclidean distance and averages them to fill in for the miss-
ing data (Beretta & Santaniello, 2016). To find kNNs,
Euclidean distance was calculated for all relevant features.
For example, if a patient did not draw the number “3,” a
search was performed on all patients of the same diagnosis
who did draw the “3.” Then, the k patients who were most
similar with respect to the Euclidean distance to the patient
in question were identified. The features associated with the
number “3” were averaged from these k patients and were
then incorporated as the missing values. To account for
patients who did not draw an entire digit and/or clock
hand(s), binary variables were created and coded such that
a one indicated the value was originally missing and a zero
indicated it was available. These additional features pre-
served the information that the value was imputed for the
corresponding patient.

The last preprocessing step involved data partitioning with
respect to diagnostic labels. As stated above, the overall goal of
this project was to classify non-MCI, MCI subtypes, and AD
patients into their respective groups. A singe four-group clas-
sification and two combinations of three-group classifications
were calculated. However, because of modest sample size
among our four patient groups, we were particularly interested
in how well machine learning feature selection was able to
classify patients into any combination of two groups. Hence,
six 2-class problems were evaluated (i.e., all pairwise
combinations of two diagnostic groups): non-MCI versus
aMCI; non-MCI versus mixed/dys MCI; non-MCI versus
AD; aMCI versus mixed/dys MCI; aMCI versus AD; and
mixed/dys MCI versus AD. In performing these experiments,
information theoretic feature selection algorithms were
applied to the problem and then fit to an appropriate feedfor-
ward neural network classifier (see Table 2). In an additional,
follow-up analysis, aMCI and mixed/dys MCI groups were
combined to enable an analysis of classification accuracy for
non-MCI versus MCI.

Information Theory-Based Feature Selection

The classification of patients throughmachine learning-based
analysis of the dCDT was based on two processes:
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information theory-based feature selection to identify the
most relevant constellation of clock features for distinguish-
ing between groups and successive training of a neural net-
work classifier to identify group membership based on
training data for which the group was known.

As noted above, 350 command and copy dCDT features
were obtained from the entire sample of 163 patients.
Information theoretic-based feature selection approaches
were used to determine the most informative features
(Brown, 2009). Information theoretic methods evaluate dif-
ferent forms of entropy-based MI between diagnoses and
features.

Several information theoretic measures are available for
computing the amount of information carried by a set of
attributes. In this study, we evaluated MI, minimum redun-
dancy maximum relevancy (MRMR), joint mutual informa-
tion (JMI), and conditional mutual information maximization
(CMIM), as described in more detail below (Brown, 2009).
All of these metrics are based on the central measure of
information, defined by entropy, which measures the amount
of uncertainty in a random variable, that is, the higher the
uncertainty, the higher the information. Given a random
variable X (e.g., a specific feature), the entropy of X is given
by Equation 1.

H Xð Þ ¼ �
X

x2X p xð Þ log p xð Þ (1)

where p xð Þ is the probability that the random variable X
assumes the specific value x. For example, if the specific
value of a feature is always the same (i.e., there is no uncer-
tainty), the p xð Þ is either 0 or 1, depending on the value of x.

Shannon’s mutual information I (X,Y)

This is defined as the dependence between two random
variables X and Y as shown in Equation 2.

IðX;YÞ ¼
X

x2X
X

y2Y pðx; yÞ log
pðx; yÞ
pðxÞpðyÞ

� �
(2)

where p(x, y) is the joint probability that the random variable
X assumes a particular value x, and the random variable Y
assumes a particular value y. For a given feature represented
by the random variable X and corresponding diagnosis repre-
sented with the random variable Y, the MI between X and Y
is a measure of the change in entropy (drop in uncertainty)
of Y due to the presence of X. Therefore, high MI between
a feature and a diagnosis indicates that the feature is a good
predictor of its respective diagnosis.

Minimum redundancy maximum relevancy

This was defined below in Equation 3 and includes the con-
sideration of redundancy in addition to maximizing the MI of
a feature and a diagnostic label.

Jmrmr Xnð Þ ¼ I Xn;Yð Þ � 1
n� 1

X
n�1
k¼1

I Xn;Xkð Þ (3)

Specifically, the MI between two features Xn and Xk

(i.e., the redundancy in knowing both Xn and Xk), averaged
over all features k ¼ 1; . . . ; n� 1, is subtracted from the MI
between the feature of interestXn and the label Y. The purpose
of MRMR is to eliminate redundant features, while still
selecting a set of features that enable an accurate prediction
of the class label.

Joint mutual information

As shown in Equation 4, this measure includes an additional
positive term, the conditional redundancy, compared to
MRMR.

Table 2. Information theoretic final results

FS criterion
Neural network
size

Number of features
selected

Performance
(%) 95% CI

Non-MCI versus aMCI CMIM 2 L, 10, 10 N 25 84.33 7.03
Non-MCI versus mxMCI CMIM 1 L, 50 N 25 85.42 9.11
Non-MCI versus MCI (combined
phenotype)

MRMR 1 L, 50 N 100 83.69 9.85

Non-MCI versus AD CMIM 2 L, 20, 10 N 125 91.42 6.02
aMCI versus mxMCI MRMR 2 L, 10, 10 N 75 84.11 5.90
aMCI versus AD MRMR 2 L, 20, 10 N 100 91.49 5.99
mxMCI versus AD JMI 2 L, 20, 10 N 125 84.05 6.14
Non-MCI versus aMCI versus mxMCI JMI 1 L, 50 N 125 71.64 6.46
aMCI versus mxMCI versus AD MI 1 L, 50 N 50 75.97 6.19
Non-MCI versus aMCI versus mxMCI
versus AD

MI 1 L, 50 N 100 64.05 4.92

FS criterion = feature selection criterion; mxMCI = mixed/dysexecutive mild cognitive impairment.
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Jjmi ¼ I Xn;Yð Þ � 1
n� 1

X
n�1
k¼1

I Xn;Xkð Þ � I Xn;XkjYð Þ½ �
(4)

The conditional redundancy is the redundancy between
two features Xn and Xk given the diagnostic label Y. This term
is an indication of first-order interaction between those two
features that, when used together, is beneficial in the predic-
tion of the diagnostic group.

Finally, CMIM is similar to JMI; however, CMIM takes a
more pessimistic approach than JMI (Equation 5).

Jcmim ¼ I Xn;Yð Þ �maxk I Xn;Xkð Þ � I Xn;XkjYð Þ½ � (5)

Instead of taking the average of all first-order interactions
(i.e., difference between redundancy and conditional
redundancy), CMIM only considers the specific pair Xn ; Xkð Þ
whose first-order interaction outputs the maximum score.
For this reason, CMIM selects the feature Xk based on the
interaction with an already selected feature Xn that gives
the lowest score J. Therefore, if Xk has high redundancy
and low conditional redundancy with only one other feature,
then Xk will have a low score regardless of the interactions of
Xk with other features.

Using these metrics as a feature selection approach
involves computing the relevant information theoretic metric
for each of the features followed by rank ordering the features
in descending order according to the scores they receive.
Then, a subset of these features with the highest scores is
selected as the most informative feature subset.

Balancing the Data

In the current data set, the largest group (i.e., patients with
AD) had 59 patients and the smallest group (aMCI) has 26
patients. The adverse impact of imbalanced datasets, creating
a bias in the classification decisions of most machine learning
algorithms, is well known. To address the imbalanced data
concern, we used the well-established Synthetic Minority
Oversampling Technique (SMOTE) to rebalance the classes
(Chawla, Bowyer, Hall, &Kegelmeyer, 2002). This approach
adds carefully constructed synthetic representative data
points to underrepresented classes near the vicinity of
existing instances. SMOTE does this by first determining
the kNNs of each existing minority instance (k is set to five
by default). The algorithm then randomly chooses an instance
of a minority class and randomly selects one of its kNNs.
Synthetic instances are then created through interpolation
along the vector space between the randomly selected
instance and its kNN. This process is repeated for additional
instances of each minority class until all the minority classes
are the same size as the majority class. It is important to note
that SMOTE was only used to rebalance training datasets
with which the classification models were trained. All diag-
nostic performances listed in the Results section were com-
puted on a test/ evaluation dataset that strictly consisted of
real patient data only.

Classifier Training

Group classification of patients based on dCDT feature
selection was accomplished using feed-forward neural net-
works, due to their previously reported success in classifying
medical data for diagnostic purposes (Amato et al., 2013) and
because of the ability to modify the number of hidden layers
and the number of nodes per hidden layer, which allows the
network to adjust its learning capacity and approximate
decision boundaries (Autio, Juhola, & Laurikkala, 2007).
To address over-fitting, we implemented a relatively “small”
network with fewer adjustable weights. A gradient descent-
based stochastic optimization approach was the optimizer
used, with early stopping as a further protection against
over-fitting (Kingma & Ba, 2014).

Three different neural network architectureswere compared
to identify the best predictive configuration for accurately
identifying group membership based on dCDT features alone:
(1) one hidden layer of 50 nodes, (2) two hidden layers of
10 nodes each, and (3) two hidden layers with 20 and 10 nodes.
Each of these structures was trained for features selected with
each of the four information theoretic criteria in order to deter-
mine the highest performer of each test case (see Supplemental
Tables 1–9). We further implemented a 10-fold cross-
validation to obtain a better prediction of the true generaliza-
tion performance of the diagnostic classifier, as well as a
confidence interval of the estimated performance. In all cases,
the diagnostic performance was computed on test datasets that
had been set aside and not used for training, and strictly con-
sisting of real patient data only.

There is, of course, empirical interest in describing the
contributions of individual features to accurate classification.
Unfortunately, feed-forward machine learning analysis does
not yield this kind of information, because it does not analyze
data using a General Linear Model (GLM)/regression-based
model. While magnitude is considered, there is no direction-
ality assigned to features or the score that ranks features using
MI analysis. In addition, any weight that the analysis assigns
to a given feature is masked by the hidden layers of the neural
network architecture. It would be inaccurate to think of the
relationship between a given feature and a classification label
as linear, that is, possessing an easily interpreted directional
value, because all features are being considered holistically
within the model to arrive at a “best fit” classification.
While the features themselves and their rank order allow
for speculation about what value individual features contrib-
ute to the accuracy of classification, much of what machine
learning analyses extract from a given feature is hidden
within the analysis, thus limiting anything that can be said
beyond that a given feature is relevant to distinguishing
between two or more groups.

RESULTS

Groups did not differ for education (F[3, 161]= 2.33, p< .076,
η2= .079). AD patients were older (F[3, 161] = 4.20,
p< .001, η2= .040) compared only to the mixed MCI group
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(p< .009). AD patients obtained lower scores on the MMSE
(F[3, 161] = 27.39, p< .001, η2= .345) than all other groups
(Table 1). There were no differences on the MMSE between
the non-MCI and MCI groups. The results of all four-group,
three-group, and two-group analyses are presented in
Table 2 and Figure 1. The least complex model, that is, the
model with the fewest adjustable weights or smallest network
that obtained the best performance with a narrow confidence
interval using as few features as possible, was chosen as the
best result in each test case.

Figure 1 shows all 2-, 3-, and 4-diagnostic group analyses
where the classifiers were trained with features selected based
on information theoretic feature selection. As expected, each
two-group analysis performed better as compared to
three- and four-group comparisons. All two-group analyses
surpassed 80% diagnostic accuracy in correctly classifying
patients into their respective groups. Three- and four-group
analyses yielded classification rates below 80%.
Supplemental Tables 1–9 provide additional information,
showing diagnostic performances obtained by each of the
three different neural networks when trained with features
obtained from each of the four information theoretic
approaches discussed above. Supplemental Table 10 lists
the first 20 features that entered into several two- and
three-group analyses. A follow-up analysis was conducted
whereby all MCI patients were placed in a single MCI group
and compared to non-MCI patients. Feature section
employed MRMR. Consistent with other two-group compar-
isons, this analysis also surpassed 80% diagnostic accuracy
(83.69%; see Table 2).

DISCUSSION

The goal of the current research was to determine how well
machine analytic techniques could classify AD patients,
non-MCI patients, amnestic MCI, and combined mixed/dys

MCI patents into their respective subtypes. Prior research
has demonstrated that non-MCI and selected MCI subtypes
can be differentiated using tests assessing mental manipula-
tion (Emrani et al., 2018), verbal versus visual working
memory (Emrani et al., 2019), verbal versus visual episodic
memory (Wasserman et al., 2019), and selected visuospatial
operations (Wasserman et al., submitted). These data are
compelling on the basis of the neurocognitive constructs that
are assessed and differentiated between groups. However, the
complexity of the tests used in this research are not neces-
sarily appropriate to be deployed as front-line screening
measures.

No single neuropsychological test, including the dCDT, can
substitute for detailed neuropsychological assessment in
diagnosing dementia, MCI, or any other neurological condi-
tion. Moreover, research into how well the CDT can screen
for dementia ismixed. Brodaty andMoore (1997) reported that
the CDTwas superior to theMMSE in screening for dementia,
such as AD, in patients evaluated in a memory clinic. Other
researchers assessing participants drawn from primary care
found mixed results regarding how well the CDT was able
to identify patients with dementia or MCI (Ehreke et al.,
2009; Kirby et al., (2001). In a large population study com-
prised of over 6,000 participants drawn from primary care
settings, the CDT was better than other neuropsychological
screening measures in identifying participants with possible
dementia (Reinera et al., 2018). Caballero et al. (2018) found
that worse diabetes medication adherence was related to
greater impairment on the CDT. Hetland et al. (2014) noted
that older persons takingmedication believed to impair driving
skills produced greater impairment on the CDT.

Despite inconsistencies in past research, the results of the
current research suggest that digitally obtained clock drawing
behavior analyzed using machine learning algorithms may be
able to screen for subtle to mild neuropsychological impair-
ment. Subtle to mild neuropsychological impairment as seen

Fig. 1. Highest performing results for each test case using information theoretic feature selection criteria (see Table 1 for values). Error bars
correspond to 95% CI.
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on the dCDT could, indeed, signal the emergence of a neuro-
degenerative illness such as AD. However, other aetiologies
underlying subtle to mild neuropsychological impairment,
such as psychiatric problems, might also result in impairment
on the dCDT, including depression and anxiety, subtle medi-
cation side effects, and medical illness other than putative
dementia. These questions should be the subject of future
research. Nonetheless, deploying dCDT in the primary care
environment and/ or other health care points of entry has
potential for better overall healthcare delivery.

In the current research, we were able to demonstrate that
feature selection coupled with a judiciously selected network
architecture proved to be effective, particularly for two-way
classification with performances in the 80%–90% range. For
most of our results, the confidence intervals of different
methods overlapped, indicating that different classifiers
and feature selection approaches performed similarly. This
is, perhaps, not surprising due to the similarity of each of
the information theoretic metric, all of which are based on
MI. It is worth repeating that, in general, the binary two-group
analyses significantly outperformed the multi-class 3 and 4
group classification analyses. However, this outcome must
be considered in the proper context of the difficulty of the
problem, such that a classifier is said to provide meaningful
utility by making intelligent decisions if its performance is
better than random guessing. In a binary classification prob-
lem, that threshold is 50%; hence, classifiers performing in
the 80%–90% range are clearly making intelligent decisions.
In our four-group problem, however, that threshold is 25%.
Thus, classifiers performing in the 60%–70% range are, in
fact, providing meaningful information. While the three-
and four-group problems performed more modestly, the
results described above are nevertheless quite promising.
However, we acknowledge that better multi-group classifica-
tion rates are desirable. Additional research using a larger
sample size may address these issues.

Classifying MCI subtypes and differentiating MCI from
dementia such AD require a lengthy protocol including compre-
hensive neuropsychological tests, structural and/or biomarker-
related CT/MRI scans of the brain, and an appropriate medical
evaluation. As stated above, the current research does not
suggest that the dCDT can replace the standard workup for
MCI/ dementia nor are we suggesting the performance on a
single test is sufficient to make an informed diagnosis.
Nonetheless, the accuracies achieved for all binary problems
are all at least 83%. As previously discussed, weaknesses in
currently employed brief cognitive screening measures, includ-
ing inconsistent test–retest reliability and sensitivity to
premorbid intellect, leave such measures vulnerable to misclas-
sifying patients. While the potential for misclassification can
never be completely eliminated, the accuracy of classification
achieved through machine learning analysis of a digitized, brief
screening measure such as the dCDT may be a valuable indica-
tor of emerging or undetected cognitive change. Thus, the
administration of the dCDT is an inexpensive and efficient
means to screen for possible alterations in neuropsychological
abilities.

One of the strengths of the current study is the well-validated
comprehensive neuropsychological diagnostic criteria used to
classify non-MCI and MCI patients into their respective
groups (Jak, Bondi et al., 2009). However, limitations must
be acknowledged, including lack of ethnic diversity in our sam-
ple, possible bias in that AD patients were drawn from one site,
and our modest sample size relative to the number of features
that were analyzed. Also, although groups did not differ for edu-
cation, premorbid abilities can influence performance on the
CDT (Ainslie, et al., 1993). Future research exploring relations
between premorbid abilities as related to group classification
using machine-learning algorithms should be undertaken
before a measure such as the dCDT can be used to screen for
possible neuropsychological impairment. Additionally, the
results of the current researchwere obtained frommemory clinic
patients. Different findings may have emerged when training a
machine-learning classifier with a community-based sample.
Future research should also recruit a community dwelling,
NC group and assess how well machine-learning algorithms
can classify NC versus any patient with MCI in addition to
MCI subgroups.

Finally, the CDT is quite multidimensional regarding the
neuropsychological abilities that are needed for successful
performance. The methods used in the current research are
not able to point to specific neuropsychological constructs that
may underlie group classification. Future research combining
machine learning classification followed by the analysis of
algorithm-selected dCDT features and neuropsychological
test performance may be able to provide information
regarding the constructs that appear to contribute to group
classification.

Additional future work also includes the need to use
different feature selection approaches other than information
theory, such as wrappers, genetic algorithms, and ensemble-
based feature selections. However, it should be noted that
each of these approaches are considerably more costly with
respect to computational complexity and, in general, rely
on specific classification algorithms. The information theo-
retic approaches, on the other hand, are independent of the
classifier, providing a more unbiased estimate of the rel-
evance of the features, not to mention their significantly lower
computational cost. Perhaps a more interesting analysis is to
compare a variety of feature selection approaches and then
determine the overlap in the set of features selected among
them. Such an analysis may provide additional insight into
which features appear to be selected more often and are, per-
haps, more informative than the others. Despite these limita-
tions, machine-learning analysis of features selected from the
dCDT is a promising tool to assess for the emergent neuro-
psychological impairment.
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