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Abstract

Data quality is an important consideration to the develop-
ment of machine learning models as poor-quality data can
slow model training, yield inadequate performance, and in-
troduce model bias. This is particularly challenging for the
development of models utilizing user generated video as hu-
man review of the entire dataset to ensure necessary quality
is likely prohibitive. An alternative approach is to automate
the review process to identify low-quality videos. A stand-out
method for blind video quality estimation of user generated
video content is the Rapid and Accurate Video Quality Evalu-
ator (RAPIQUE) which has demonstrated nearly State of The
Art (SoTA) performance in quality estimation with SoTA per-
formance in time to inference. However, adoption of the pub-
lished version of RAPIQUE is limited in part by the fact that
it is coded in MATLAB, which is not as popular in the ma-
chine learning community as Python. This paper describes
our open-source Python implementation of RAPIQUE, in-
cluding fine-tuning for video quality estimation on videos ob-
tained from mobile devices, and explains its use, which will
enable users to easily start estimating video quality.

Introduction
It is no question that video content is the king of the inter-
net for User Generated Content (UGC). It is equally obvi-
ous that many of the large players in the video space uti-
lize large machine learning models that operate on these
videos for recommendation systems, cataloguing, and in-
formation retrieval systems. Providing unfiltered UGC data
to deep learning models is unwise as it may lead to unin-
tended biases in such models. While these biases have been
well studied in other domains such as sequence-to-sequence
models where large unfiltered swaths of data are provided
to the model, this is not the case for user generated videos
(Bender et al. 2021; Sheng et al. 2020; Shwartz, Rudinger,
and Tafjord 2020).

In the healthcare context, there is growing interest in col-
lecting patient physical and behavioral health information
in natural settings (Meister, Deiters, and Becker 2016). One
avenue for such data collection is patient provided video
recordings from which discrete digital biomarkers (DBM)
may be obtained. However, poor video quality can signifi-
cantly degrade DBM measurements. Therefore, automated
video quality screening is an integral component necessary
to large scale automated processing of videos in this context.

By filtering poor quality videos, we may mitigate these
biases. Several automated video quality assessment (VQA)
models have been proposed to estimate video quality in the
last few years (Moorthy and Bovik 2011; Mittal, Moorthy,
and Bovik 2012; Saad, Bovik, and Charrier 2014; Kundu
et al. 2017). Several methods however rely on Natural Scene
Statistics (NSS), which is a low-level method to extract
distortions in images (Mittal, Moorthy, and Bovik 2012;
Xue et al. 2014; Ghadiyaram and Bovik 2017; Tu et al.
2021a). A standout method from these is the Rapid and Ac-
curate Video Quality Evaluator (RAPIQUE) for its balance
of speed and performance (Tu et al. 2021b). To evaluate the
performance of VQA models, there are three publicly avail-
able blind VQA datasets: KoNViD-1k (Hosu et al. 2017),
LIVE-VQC (Sinno and Bovik 2018), and YouTube-UGC
(Wang, Inguva, and Adsumilli 2019). Of the these datasets,
RAPIQUE achieves rank 3 in two datasets and rank 5 in the
third dataset. Where this method shines is its time to infer-
ence where it out competes all others (Tu et al. 2021b). For
users that ingest large quantities of videos daily, time to in-
ference is a key metric. RAPIQUE achieves this speed by
focusing on a few low-level statistics that are quickly com-
puted (Tu et al. 2021b).

A significant limitation of RAPIQUE is that the offi-
cial implementation is coded in MATLAB which makes
it extremely difficult to integrate into production settings.
The main contribution of this work is an implementation
in Python, which is industry standard for machine learning
applications, as well as validating the experimental results
found in the original work. In addition to an implementation,
we have created a Python package (PyPI) and an API for
RAPIQUE that simplifies the use of RAPQIUE for machine
learning practitioners of all levels. Lastly, we provide the
ability to extract RAPIQUE features from multiple videos in
parallel with RAPIQUE’s application to production settings
in mind.

RAPIQUE-Python API
Our RAPIQUE implementation, designated here as
RAPIQUE-Python, operates primarily on directories of
video files, processing each video down to a 3884 length
feature vector. The RAPIQUE algorithm can be broken
down into three main components, spatial feature extraction
(1360 features), temporal feature extraction (476 features),
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Figure 1: Subfigure (a) shows the label distribution (Mean Opinion Score) of the three Visual Quality Assessment (VQA)
datasets. Subfigure (b) shows the label distribution of our internal dataset compared to the composite dataset All-Combined
which is the union of the three VQA datasets.

and deep learning feature extraction (2048 features). The
codebase is organized with the main driver function at
the top level (extract_rapique.py) and the individual
extractors, utilities and modeling code in their respective
directories.

The main driver script, extract_rapique.py, is re-
sponsible for both creating the queue, which maintains the
order in which each video is processed, and assigning videos
to individual processing threads. By default, the number of
threads is one, but our implementation allows this to scale
up to an arbitrary number of processing threads.

Per the official RAPIQUE implementation, we sample 1
frame for each second of video. The sampled frame occurs
halfway between each second of video (e.g. if the video is
recorded at 30 frames per second, then the sampled frames
will be 15, 30, 45, etc.). Each extractor utilizes the sam-
pled frame differently. The spatial feature extractor uses the
frames adjacent to the sampled frame (cur_frame ±1) to
compute the mean and difference between the two spatial
feature vectors extracted from each frame. The temporal fea-
ture extractor extracts the next 7 frames (8 total) to apply a
filter along the time axis. The deep learning feature extractor
only operates on the current frame (Tu et al. 2021b).

Natural Scene Statistics

About half of RAPQIUE’s total output are derived from Nat-
ural Scene Statistics (NSS) that can best be described as a
simple a set of statistics computed around local decorrelated
and gaussianized regions of the frame (Tu et al. 2021b). This
is achieved by computing a coefficient map, Î , using the
Means Subtraction Contrast Normalization (MSCN) method
described in Equation 1 for an single channel of an image
I (Mittal, Moorthy, and Bovik 2012; Kundu et al. 2017;
Ghadiyaram and Bovik 2017; Zhang and Chandler 2013).

Feature Index Description Computation Procedure
1-2 Shape and Variance Fit GGD to MSCN Coefficients
3-4 Mean, square reciprocal of CoV Compute statistics on the variance from the MSCN map
5-8 Shape, mean, left variance, right variance Fit AGGD to Horizontal pairwise products

9-12 Shape, mean, left variance, right variance Fit AGGD to Vertical pairwise products
13-16 Shape, mean, left variance, right variance Fit AGGD to Main-Diagonal (MD) pairwise products
17-20 Shape, mean, left variance, right variance Fit AGGD to Secondary-Diagonal (S2) pairwise products
21-22 Shape and Variance Fit GGD to D1 to pairwise log-derivative
23-24 Shape and Variance Fit GGD to D2 to pairwise log-derivative
25-26 Shape and Variance Fit GGD to D3 to pairwise log-derivative
27-28 Shape and Variance Fit GGD to D4 to pairwise log-derivative
29-30 Shape and Variance Fit GGD to D5 to pairwise log-derivative
31-32 Shape and Variance Fit GGD to D6 to pairwise log-derivative
33-34 Shape and Variance Fit GGD to D7 to pairwise log-derivative

Table 1: Summary of NSS-34 features.

Î =
I(i, j)− µ(i, j)

σ(i, j) + C
(1)

where i and j indicate the rows and columns of the image,
respectively, C is a constant (typically C = 1) to handle
divide by zero errors, and µ(i, j) and σ(i, j) represent the
weighted mean and standard deviation, respectively, of the
neighborhood centered at (i, j) shown in Equations 2 and 3.

µ(i, j) =

K∑
k=−K

L∑
l=−L

wk,lI(i− k, j − l) (2)

σ(i, j) =

√√√√ K∑
k=−K

L∑
l=−L

[wk,lI(i− k, j − l)− µ(i, j)]2,

(3)
where w is a 2D gaussian weighting function (Tu et al.
2021b). The MSCN method has been shown to quantify
local irregularities in single-channel intensity maps (Gal-
dran et al. 2017). The code to compute the coefficient map
is contained in Listing 1 and is found in extractors.
extract_nss_feats.get_nss_feats.py.

A total of 34 features are computed by the NSS feature ex-
tractor all of which are computed directly from the MSCN



Dataset KoNViD-1k LIVE-VQC YouTube-UGC All-Combined
Model PLCC ↑ SRCC ↑ RMSE ↓ PLCC ↑ SRCC ↑ RMSE ↓ PLCC ↑ SRCC ↑ RMSE ↓ PLCC ↑ SRCC ↑ RMSE ↓

RAPIQUE 0.7548 0.7863 10.518 0.8030 0.8175 0.3623 0.7591 0.7684 0.4060 0.8070 0.8229 0.3968
RAPIQUE-Python

(Ours) 0.7447 0.7642 10.926 0.7815 0.7928 0.3866 0.7923 0.7979 0.3907 0.8160 0.8238 0.4096

Table 2: Implementation validation results. Official implementation (RAPIQUE) vs our implementation (RAPIQUE-Python)
on three Video Quality Assement (VQA) datasets (KoNViD-1k (Hosu et al. 2017), LIVE-VQC (Sinno and Bovik 2018), and
YouTube-UGC (Wang, Inguva, and Adsumilli 2019)) and one composite dataset (All-Combined). Metrics from left to right
Pearson Linear Correlation Coefficient (PLCC), Spearman Rank-order Correlation Coefficient (SRCC) and Root Mean Squared
Error (RMSE). Arrow direction indicates which is better (higher or lower).

Listing 1: MSCN source code to compute Equation 1
1 filtlength = 7
2 window = utils.gaussian_filter(

filtlength, filtlength/6)
3 window = window / (np.sum(window))
4 mu = scipy.ndimage.correlate(frame,

window, mode=’nearest’)
5 mu_sq = mu * mu
6 sigma = np.sqrt(np.abs(correlate(frame *

frame, window, mode=’nearest’) -
mu_sq))

7 struct = (frame - mu) / (sigma + 1)

coefficient map. A summary of the NSS features are con-
tained in Table 1. The first two features, α and σ, from the
zero-mean Generalized Gaussian Distribution (GGD) are
shown in Equation 4 (Mittal, Moorthy, and Bovik 2012).

f(x;α, σ2) =
α

2βΓ(1/α)
exp

(
−
(
|x|
β

)α)
(4)

where β = σ
√

Γ(1/α)
Γ(3α) and Γ(·) is the gamma function. The

α and σ parameters are estimated in the same manner as the
official release, using a moment matching technique (Shar-
ifi and Leon-Garcia 1995). The source code for this step is
shown in Listing 2 The next two features we extract from
the variance estimated in Equation 3, the mean ϕσ and the
square of the reciprocal of the coefficient of variation (CoV)
where CoV : ρ = (ϕσ/ωσ)

2.

ϕσ =
1

MN

M−1∑
i=0

σN−1
j=0 σ(i, j) (5)

ωσ =

√√√√ 1

MN

M−1∑
i=0

[σN−1
j=0 σ(i, j)− ϕσ]2 (6)

In addition to modeling the distribution at the center of the
region, we model the distribution of the surrounding pixels:
Horizontal (H) (Eq 7), Vertical (V) (Eq 8), Main-diagonal
(MD) (Eq 9) and secondary diagonal (SD) (Eq 10) using
a zero mode asymmetric generalized Gaussian Distribution
(AGGD) (Mittal, Moorthy, and Bovik 2012; Tu et al. 2021b).

H(i, j) = Î(i, j)Î(i, j + 1) (7)

V (i, j) = Î(i, j)Î(i+ 1, j) (8)

Listing 2: Source code to compute α and σ GGD paramters.
Adapted from the code used in the BRISQUE paper (Mittal,
Moorthy, and Bovik 2012)
1 def est_GGD_param(vec):
2 # moment matching to estimate \beta
3 gam = np.arange(0.1, 6, 0.001)
4 gam = np.append(gam, 6)
5 r_gam = (gamma(1 / gam) *gamma(3 /

gam)) / ((gamma(2 / gam)) ** 2)
6 sigma_sq = np.mean((vec) ** 2)
7 alpha_par = np.sqrt(sigma_sq)
8 E = np.mean(abs(vec))
9 rho = sigma_sq / (E ** 2)

10 array_position = np.argmin(abs(rho -
r_gam))

11 beta_par = gam[array_position]
12 return beta_par, alpha_par

MD(i, j) = Î(i, j)Î(i+ 1, j) (9)

SD(i, j) = Î(i, j)Î(i+ 1, j + 1) (10)
The AGGD with zero mode is expressed by four parame-

ters: the mean, η, the shape, v, the left variance, σ2
l and right

variance, σ2
r and is given by Equation 11. For each direction,

we extract these four parameters, resulting in 16 features.

f(x; v, σ2
l , σ

2
r) =


v

(βl+βr)Γ( 1
v )

exp
(
−
(

−x
βl

)v)
x < 0

v

(βl+βr)Γ( 1
v )

exp
(
−
(

−x
βr

)v)
x ≥ 0

(11)
where

βl = σl

√
Γ
(
1
v

)
Γ
(
3
v

) (12)

βr = σr

√
Γ
(
1
v

)
Γ
(
3
v

) (13)

and the mean is given by Equation 14.

η = (βr − βl)
Γ
(
2
v

)
Γ
(
1
v

) (14)

Lastly the log-derivative statistics of the six paired orien-
tations (Equations 7-10) are computed by first transforming



Training Scheme Trained On Finetuned From
Metric LIVE-VQC KoNViD-1k YouTube- UGC All-Combined LIVE-VQC KoNViD-1k YouTube- UGC All-Combined
PLCC↑ 0.65 0.67 0.58 0.71 0.8 0.8 0.8 0.8
SRCC↑ 0.64 0.64 0.52 0.68 0.79 0.8 0.79 0.8
RMSE↓ 0.58 0.57 0.63 0.54 0.44 0.43 0.44 0.43

Table 3: Results from testing on the internal dataset. The trained on columns represent testing against the internal dataset using
models obtained by training on the datasets. The finetuned from columns represent testing against the internal dataset using
models obtained by performing 5-fold cross validation on the internal dataset starting from the parameters obtained in the
trained on columns. By finetuning from the original models, we can obtain the same scores shown in Table 2.

Listing 3: Source code to compute η, v, σ2
l , and σ2

r AGGD
parameters. Adapted from the source code in BRISQUE
(Mittal, Moorthy, and Bovik 2012; Tu et al. 2021b)
1 def est_AGGD_param(vec):
2 gam = np.arange(0.1, 6, 0.001)
3 gam = np.append(gam, 6)
4 r_gam = ((gamma(2 / gam)) ** 2) / (

gamma(1 / gam) * gamma(3 / gam))
5 leftstd = np.sqrt(np.mean((vec[vec

<0]) ** 2))
6 rightstd = np.sqrt(np.mean((vec[vec

>0]) ** 2))
7 gammahat = leftstd / rightstd
8 rhat = (np.mean(abs(vec))) ** 2 / np

.mean((vec) ** 2)
9 rhatnorm = (rhat * (gammahat ** 3

+1) * (gammahat + 1)) / ((
gammahat ** 2 + 1) ** 2)

10 array_position = np.argmin((r_gam -
rhatnorm) ** 2)

11 alpha = gam[array_position]
12 return alpha, leftstd, rightstd

the MSCN map using the log transform shown in Equation
15 (Zhang and Chandler 2013).

Z(i, j) = log
[
|Î(i, j)|+ 0.1

]
(15)

The shape and variance parameters are estimated for each
of the seven log-derivatives shown in Equation 16 using the
same GGD method used above (Zhang and Chandler 2013),
resulting in 14 features.

D1 : ∇xZ(i, j) = Z(i, j + 1)− Z(i, j)

D2 : ∇yZ(i, j) = Z(i+ 1, j)− Z(i, j)

D3 : ∇xyZ(i, j) = Z(i+ 1, j + 1)− Z(i, j)

D4 : ∇yxZ(i, j) = Z(i+ 1, j − 1)− Z(i, j)

D5 : ∇x∇yZ(i, j) = Z(i− 1, j)− Z(i+ 1, j)

− Z(i, j − 1)− Z(i, j + 1)

D6 : ∇cx∇cyZ(i, j)1 = Z(i, j) + Z(i+ 1, j + 1)

− Z(i, j + 1)− Z(i+ 1, j)

D7 : ∇cx∇cyZ(i, j)2 = Z(i− 1, j − 1) + Z(i+ 1, j + 1)

− Z(i− 1, j + 1)− Z(i+ 1, j − 1)
(16)

Spatial Extractor
The main idea behind the spatial extractor is to transform the
image into various color/chromatic spaces and use the NSS-
34 extractor on each channel of the transformed image. The
original authors of RAPIQUE select seven transforms and
their combinations to extract a total of 680 features (Tu et al.
2021b).

The first of these transforms converts the image to gray-
scale, denoted as Y , in Equation 17. The subsequent three
transforms, which consist of a number of filters, are applied
to the gray-scale image. These first four transformations are
referred to as the luminance transforms.

Y = (R× 0.299) + (G× 0.587) + (B × 0.114) (17)

Next, we take the Gradient Magnitude (GM) of the gray-
scale image by convolving the image with a Sobel kernel as
shown in Equations 18 and 19 (Tu et al. 2021b).

hx =

[
+1 0 −1
+2 0 −2
+1 0 −1

]
and hy =

[
+1 +2 +1
0 0 0
−1 −2 −1

]
(18)

GM =
√

(Y ∗ hx)2 + (Y ∗ hy), (19)

where Y is a single image channel and ∗ denotes the convo-
lution operator. In addition to Sobel kernels, the original im-
plementation considered Laplacian of Gaussian (LoG) (Eqn
20), and Difference of Gaussian (DoG) (Eqn 21), for their
ability to characterize the receptive fields of retinal cells
(Campbell and Robson 1968; Tu et al. 2021b).

hLoG =

(
∂2

∂x2
+

∂2

∂y2

)
gσ(x, y)

=
x2 + y2 − 2σ2

2πσ6
exp

(
−x2 + y2

2σ2

)
LoG = Y ∗ hLoG

(20)

DoG = Y ∗ gσ1
− Y ∗ gσ2

= Y ∗ (gσ1
− gσ2

) (21)

where gσ(x, y) is an isotropic Gaussian function with scale
σ (Tu et al. 2021b). The code for generating these filters is
contained in the util.utils.py file and the code has been
included here in Listings 4, 5 and 6



Listing 4: Code to generate and convolve an image with a
Sobel filter. Equivalent to MATLAB imgradient
1 def imgradient(frame_gray):
2 sobelx = cv2.Sobel(frame_gray, cv2.

CV_64F, 1, 0) # Find x and y
gradients

3 sobely = cv2.Sobel(frame_gray, cv2.
CV_64F, 0, 1)

4 # Find magnitude and angle
5 magnitude = np.sqrt(sobelx**2.0 +

sobely**2.0)
6 angle = np.arctan2(sobely, sobelx) *

(180 / np.pi)
7 return magnitude, angle

Listing 5: Code to generate LoG filter. Equivalent to MAT-
LAB ‘fspecial’
1 def log_filter(p2, p3):
2 p2 = np.array([p2, p2])
3 # Translated from matlab fspecial

LoG
4 siz = (p2 - 1) / 2
5 std2 = p3**2
6 x, y = np.meshgrid(np.arange(-siz

[1], siz[1]+1), np.arange(-siz
[0], siz[0]+1))

7 arg = -(x*x + y*y)/(2*std2)
8 h = np.exp(arg)
9 eps = np.finfo(float).eps #

machine epsilon: flop acc
10 h[h<eps*max(h.reshape(-1, 1))] = 0
11 sumh = np.sum(h)
12 if sumh != 0:
13 h = h / sumh
14 # now calculate Laplacian
15 h1 = h*(x*x + y*y - 2*std2)/(std2

**2)
16 h = h1 - np.sum(h1)/np.prod(p2) #

make the filter sum to zero
17 return h

The second set of transforms are called the chromatic
transforms. These transforms shift the original RGB im-
age into other color spaces such as O1O2O3 (Eqn 22), red-
green (RG), blue yellow (BY) (Eqn 23) and A, B from the
CIELAB color space (LAB transform available in Open-
CV) (Bradski 2000).[

O1

O2

O3

]
=

[
0.06 0.63 0.27
0.30 0.04 −0.35
0.34 −0.60 0.17

][
R
G
B

]
(22)

R(i, j) = log [R(i, j) + 0.1]− µR

G(i, j) = log [G(i, j) + 0.1]− µG

B(i, j) = log [B(i, j) + 0.1]− µB

L̂ = (R+ G + B)/
√
3

BY = (R+ B − 2B)/
√
6

RG = (R− G)/
√
2

(23)

Listing 6: Code to generate DoG filter
1 def gen_DoG(frame_gray, kband):
2 h, w = frame_gray.shape
3 kval = 1.6
4 gspace_img = np.zeros((h, w, kband))
5 ksplit_img = np.zeros((h, w, kband))
6 gspace_img[:,:,1] = frame_gray
7 # gen gassuan pyramids
8 for band in range(1, kband):
9 sigma = kval ** (band - 2)

10 ws = ceil(2*(3*sigma + 1))
11 h = gaussian_filter(ws, sigma)
12 gspace_img[:,:,band] = correlate

(gspace_img[:,:,1], h, mode=’
nearest’)

13 ksplit_img[:,:,kband - 1] =
gspace_img[:,:,kband - 1]

14 for band in range(kband - 1):
15 ksplit_img[:,:,band] =

gspace_img[:,:,band] -
gspace_img[:,:,band+1]

16 return gspace_img, ksplit_img

To summarize, we have 9 image channels used in the fi-
nal algorithm: Y, LoG, DoG, O1, O2, BY, RG, A and B and
their respective gradient magnitudes: GMY, GMO1, GMO2,
GMBY, GMRG, GMA, and GMB. For each of these image
channels we extract 34 features except for the luminance
maps (Y, GMY, LoG, DoG) where we extract 34 features
each at the full resolution and half the original resolution.
The final number of features computed for each frame of
video is (34 × 4 × 2) + (34 × 12) = 680. Recall that the
total number of features extracted by the spatial extractor is
1360 due to sampling the adjacent frames (cur_frame ±
1) to the compute mean and difference across the features
extracted from both frames.

Temporal Extractor
Recall that for the temporal extractor we sample 8 frames of
the video around the sampling frame depending on its loca-
tion. If the sampling frame is within 8 frames of the begin-
ning, we sample the first 8 frames, if the sampling frame is
within 8 frames of the end of the video we sample the last 8
frames. Otherwise, we sample 8 frames centered around the
sampling frame. Each frame is converted to the YUV image
format and only the Y channel of each frame is used in the
following steps.

To extract temporal dependent features, the original
method utilizes simple bandpass statistics. The original
method uses a 7x8 Haar wavelet filter convolved along the
time axis (Equation 24) resulting in 7 transformed frames
with the same shape as the input images.

Yk(x, t) = F (x, t) ∗ hk(t), k = 0, ...,K − 1, (24)

where K is the number of filters, 7 in this case, and k indi-
cates the current subband index (Tu et al. 2021b). For each
Yk(x, t) we extract the NSS-34 at two scales just as we did
with the spatial extractor resulting in 34 × 7 × 2 = 476
features (Tu et al. 2021b).



Experiment No Spatial No Temporal No Deep Learning
Dataset PLCC↑ SRCC↑ RMSE↓ PLCC↑ SRCC↑ RMSE↓ PLCC↑ SRCC↑ RMSE↓

All-Combined 0.7822 0.7947 0.4379 0.8106 0.8215 0.4104 0.8101 0.8201 0.4139
Performance Difference 0.0337 0.0291 0.0282 0.0053 0.0022 0.0007 0.0058 0.0036 0.0042

Table 4: Result of our ablation study on the All-Combined dataset. The first row shows the results for all metrics and the second
row shows the difference between the results show in Table 2 and the first row of this table. The largest performance differences
for each metric are bolded.

Deep Learning Extractor
It is well known that deep Convolutional Neural Networks
(CNNs) capture informative features from images especially
in the domain of image quality prediction (Ying et al. 2020;
Zhang et al. 2018). The original authors of this method pro-
posed to combine deep learned features from a general per-
formance image classifier trained on ImageNet (Deng et al.
2009) with NSS features (Tu et al. 2021b).

For each sampled frame, the sampling frame is scaled
and normalized according to the ImageNet training scheme,
that is, resized to 256x256, center-cropped to 224x224 and
normalized using the statistics derived from the ImageNet
dataset (Deng et al. 2009). The model used is a ResNet50
and the bottleneck features (after the flatten and before the
first fully connected layer) are extracted resulting in 2048
total features (Tu et al. 2021b).

Modeling and Validation
In order to validate our approach, we replicated the exper-
imental procedures outlined in the original work (Tu et al.
2021b). Three video quality datasets were chosen for per-
formance evaluation: KoNViD-1k (Hosu et al. 2017), LIVE-
VQC (Sinno and Bovik 2018), and YouTube-UGC (Wang,
Inguva, and Adsumilli 2019). Just as was done in the original
work, we also utilized a Combined dataset (All-Combined),
that is a concatenation of the three named datasets (Tu et al.
2021b). The main objective of VQA is to predict the Mean
Opinion Score (MOS), which represents the mean of a sub-
jective score (typically on a 1-5 scale) given by labelers,
therefore, this is a regression problem. Since each dataset
uses different scales for MOS (e.g. 1-10 for LIVE-VQC, 1-5
for YouTube-UGC), for the combined dataset, we adjust the
labels of LIVE-VQC and KoNViD-1k to YouTube-UGC’s
labelling convention using Equations 25 and 26 (Tu et al.
2021b).

yadjusted = 5−4× [(100−yLIVE-VQC/100×0.7132+0.0253]
(25)

yadjusted = 5− 4× [(5− yKoNViD-1k)/4× 1.1241− 0.0993]
(26)

For each video in the dataset, the RAPIQUE feature vec-
tors were computed. These feature vectors are used as in-
put to a RBF SVM using a 5-fold cross validation train-
ing scheme. Missing data was assumed to be missing at
random and missing values were replaced with the mean
value. Train and test data were standardized using statis-
tics from the training set. The C and γ parameters of the

SVM were tuned via random search in a nested 3-fold cross
validation scheme. For each parameter, we tested a range
of 10 evenly spaced values on a log-2 scale. For C we
tested 21 − 210 and 2−8 − 21 for γ. The best scoring pa-
rameters were used to refit the model and this model was
used to evaluate the test data. This process is contained
in the modelling.fit_regressor.model_selection
function in our package and our results can be reproduced
by running the fit_regressor.py script with a dataset
name as input (e.g. ‘LIVE-VQC’).

To compare our implementation with the official repos-
itory, we use the same metrics outlined by Tu et al.,
Pearson Linear Correlation Coefficient (PLCC), Spearman
Rank-order Correlation Coefficient (SRCC), and Root Mean
Squared Error (RMSE). All were computed directly after in-
ference besides PLCC and RMSE which were computed af-
ter performing a nonlinear four-parametric logistic regres-
sion as is standard in the literature (Seshadrinathan et al.
2010; Tu et al. 2021b). To determine statistical significance,
we repeated the same process using features extracted by the
official method and obtained p-values using a t-test. For our
experiment to be a success, our goal is to fail to reject the
null hypothesis (p > α), which is to say, there is no signif-
icant differences in the metrics achieved by the official im-
plementation compared to ours. We choose α = 0.01 to be
our significance level. We also ran ablation studies where the
process described above was repeated holding out one set of
features each time (e.g. spatial features removed, trained and
tested using only temporal and deep learning features).

For use in production, we sought to evaluate performance
on an internal dataset consisting of videos users record in
natural settings (e.g. home) using a mobile device while per-
forming a prescribed behavioral task (Abbas et al. 2021).
In accordance with the HIPPA privacy rule, this dataset
will not be publicly available because it contains Protected
Health Information. To this end, six labelers labelled a set
of 200 videos with their opinion score. The distribution of
labels for each dataset are shown in Figure 1. The labelers
were “trained” using videos from KoNViD-1k, LIVE-VQC,
and YouTube-UGC, where they were provided labeled ex-
amples to learn from. The opinion scores for each video
were averaged to obtain a MOS for each video and then
evaluated using the best performing model from each of
the prior experiments (training on KoNViD-1k, LIVE-VQC,
YouTube-UGC, All-Combined) following the same prepro-
cessing steps as described above. After evaluating the per-
formance we fine-tuned each model using the same 5-fold
cross validation scheme starting from the optimal parame-
ters found in the prior experiments and re-evaluated the per-



formance.
To evaluate the speed of our implementation, we bench-

marked our method using a set of five videos from the
YouTube-UGC dataset (Wang, Inguva, and Adsumilli 2019).
A set of five videos were chosen at each resolution available
in the dataset (360p, 480p, 720p and 1080p) and each video
had a duration of exactly 20 seconds. Knowing that Python
is inherently slower than MATLAB, we chose to implement
RAPIQUE-Python with support for multiple threads extract-
ing in parallel. To that end, we measure the extraction time
of each video set with various parallel threads (1-5).

For our ablation and finetuning experiments we scaled all
labels using Equation 25 and 26 so that the metrics were all
on the same scale.

Results
Table 2 shows the evaluation of the same baselines as the of-
ficial implementation. It is clear our implementation is very
close and superior in some instances but it is not obvious
if they are significantly different. Using a two-way t-test, it
was found that for all tests, p > 0.01. In this case we fail
to reject the null hypothesis therefore there is no significant
difference between the features extracted by our implemen-
tation and the official implementation. For each dataset we
found the optimal hyperparameters of our SVM to be: LIVE-
VQC: C = 16, γ = 2−8, KoNViD-1k: C = 2, γ = 2−8,
YouTube-UGC: C = 32, γ = 2−8, All-Combined: C = 2,
γ = 2−8,

Table 3 shows our method’s performance estimating MOS
on our internal dataset. Without finetuning there was a
greater than 25% reduction in performance (RMSE) com-
pared to the All-Combined benchmark. By finetuning we
were able to bring our performance back up to our bench-
mark scores from Table 2.

Table 4 shows the result of our ablation study. The spa-
tial features were the component that caused the largest de-
crease in performance, however, the performance difference
is not actually a very large. This indicates that each com-
ponent contributes meaningfully to the whole method. We
postulate that there must be large overlap in the features ex-
tracted by each component resulting in redundant features.
We leave a feature selection analysis for future work.

The result of our speed benchmarking experiment are
shown in Figure 2. These results were obtained using an In-
tel Xeon E5-2686 CPU and a Nvidia Tesla K80 GPU. The
official implementation reports an average extraction time of
17.3 seconds for a second of 1080p video (Tu et al. 2021b).
In Figure 2 we show that with multithreading enabled we
can perform the same extraction in about 18 seconds with
lower performing hardware than was reported in the official
work (Tu et al. 2021b).

Conclusion & Future Work
In this paper, we present a Python implementation of the
RAPIQUE VQA algorithm. We validated our implementa-
tion by replicating experiments from the official release and
found that there were no significant differences between the
two. Next, we showcased how to adapt general performance

Figure 2: This figure shows the time to complete RAPIQUE
feature extraction for a set of 5 videos as a function of
the number of parallel processing threads and video reso-
lution. The videos used to benchmark were taken from the
YouTube-UGC dataset (Wang, Inguva, and Adsumilli 2019).
Each video was approximately 20 seconds long.

MOS prediction models to a very specific subset of data us-
ing our internal dataset. We discussed our API and how each
component of the method interacts with one another. Finally,
in our ablation study, we examined the implications of re-
dundant features and plan to study this in our next work in
an effort to speed up the method even further. Upon publica-
tion our GitHub and PyPI package will be made public and
we will link to them here.
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Galdran, A.; Araújo, T.; Mendonça, A. M.; and Campilho,
A. 2017. Retinal image quality assessment by mean-
subtracted contrast-normalized coefficients. In European



Congress on Computational Methods in Applied Sciences
and Engineering, 844–853. Springer.
Ghadiyaram, D.; and Bovik, A. C. 2017. Perceptual quality
prediction on authentically distorted images using a bag of
features approach. Journal of vision, 17(1): 32–32.
Hosu, V.; Hahn, F.; Jenadeleh, M.; Lin, H.; Men, H.;
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