
Monte Carlo Control for Modified Blackjack
Jacob Epifano, Sean McGuire

Abstract—This paper explorers the creation of a Monte Carlo
(MC) agent used to play the game Blackjack. This agent was
trained on a Blackjack simulator in python. This Blackjack
simulator deals the cards and requests an action from the agent
(hit or stay). The agent receives the sum of the players cards and
the showing dealers card, this is the agent state. The MC agent
returns an action selected from the policy. Following optimal
blackjack strategy a win-rate of 42.42% is expected. Our agent
was able to play blackjack with a win rate of 41.27%. This shows
that Monte Carlo Control was able to generate a policy capable
of formidable play in the game of Blackjack. Additionally, we
believe our agent was able to learn higher level concepts such as
card counting (estimating the changing probabilities of the next
card given the showing cards) due to the fixed size of our deck.

I. INTRODUCTION AND BACKGROUND

In this project a reinforcement learning agent was created
to play the game Blackjack. Blackjack is a casino game
where the players compete against the dealer to see who can
get closer to a score of 21 without going over. Each card 2-10
is given their face value while cards Jack, Queen, King are
all given a value of 10. The Ace card can be either 1 or 11.
Each round 2 cards are dealt face up to each player. 2 cards
are also dealt to the dealer, however only one of them is
face up. In order the players can either choose to get another
card (hit) or pass their turn (stay). In this implementation
there is only a single player and the dealer at the table. The
dealer must hit until their sum is 17 or higher. If the player
has a higher value after the dealer is done drawing then the
player wins. If the dealer or the player goes over 21, they
lose. If the dealer and the player both settle on the same
score the round is a ”push” or draw and the bets remain on
the table. In this implementation we will draw from a deck
of 52 cards and reshuffle after each game. This is done to
avoid the changing probabilities which occur when using a
finite number of decks over many games. The concern is that
the agent will learn to count cards, or learn to estimate the
probability of different cards coming out over many games. [2]

This problem will be formulated as an MDP with the
states covering the value of the players card and the visible
dealer card. The rewards will be -1 for losing (bust or a
value lower than the dealer), 0 for a draw, and 1 for winning.
The actions will be to hit (draw another card) or stay (stop
drawing cards). In this problem, returns will not be discounted
as the rewards are only given at the end of an episode and
the episode length is relatively short.

We will use the Monte Carlo (MC) Control algorithm
to attempt to learn the optimal policy. Since each episode
(game) only has 3 decisions on average, there is no point

in using any truncated learning algorithm (like n-step TD).
For the sub-type of algorithm we will use on-policy MC
with an ε-greedy policy. ε-greedy algorithms have a non-zero
chance to select a random action as opposed to the option
that maximizes reward during training. We do this so that
our algorithm explores non-optimal positions in hope that
the agent can find the best way to play from every state it
reaches. Some blackjack strategies suggest relying on a bad
hand if the dealer is showing a low card, than to hit to obtain
a higher score. This is because the dealer has a high chance
of busting as it is assumed the next card will be a value of
10 (most common card) and the dealers sum will be under
17 so they will have to hit again and have a high chance of
busting. The agent cannot reason and figure this out, it has to
learn this through many iterations of game play.

II. APPROACH

A. Markov Decision Process Formulation

The first step in reinforcement learning is fully defining
the problem in terms of a Markov Decision Process (MDP).
Defining the problem as an MDP includes defining state
space, state transition probabilities, action space, and rewards.
The Blackjack state space in this approach was defined as
a combination of the sum of the users cards and the value
of the dealers showing card. This state formulation contains
almost all of the information needed by the agent to make a
decision. The one piece of information left out is if an Ace
is in the players hand. In this case the Ace can be valued as
a 1 or an 11. To simplify the problem the highest allowable
value of an ace was used, for example if the player was dealt
an Ace and an 8 the current state would be 19. The action
space at a given state is either hitting (getting another card
from the dealer) or sticking (ending the game with the value
at hand). If the player decided to hit then the game will request
another action. The transitions between states is the probability
of drawing a given card to get to the given state. In this case
these probabilities are unknown to the agent and it has to
learn these probabilities by playing many games. The game
of Blackjack can terminate in one of three ways, a tie, win,
or loss. The rewards are defined as +1 for winning, -1 for
losing, and 0 for ties. This reward structure emulates a player
betting at a casino. It is also important to note that the agent is
operating in a partially observable environment as the dealers
second card is unknown. This means that it may require many
iterations over a set of states to properly estimate the value of
the given state.



B. Possible Solutions

There are many different reinforcement learning methods
which can be applied to solve problems such as Blackjack.
Some of these methods include temporal difference (TD)
learning, dynamic programming (DP), and functional approxi-
mation. Temporal difference learning was found to not provide
a meaningful benefit over Monte Carlo learning as the episode
lengths in blackjack are rather short and would not benefit
much from bootstrapping. Dynamic programming is a possible
solution to this problem but it is computationally expensive
as it would require a very high number of iterations to
converge. Dynamic Programming is also essentially a brute
force approach to the problem as it manually explores all of
the states and does not attempt to learn from its own play.
Functional approximation methods are not needed as the state
space and action space are manageable sizes and there is not
much to be approximated.

C. Monte Carlo Method

The algorithm we settled on was an on-policy Monte Carlo
method. The policy was initialized as an ε-soft policy. We
used an ε-greedy approach to optimize our policy with and ε
of 0.1. We ran the agent to train over one million iterations,
while saving the policy every one hundred thousand iterations.
The algorithm below describes our training process.

Algorithm 1 Decision Loop
for A ∈ episode do

if ε < Unif(0, 1) then
A← π(s)

else
A← RandomAction

end if
end for
return Gt ← (−1, 0, 1)

For every decision in an episode we compare a random
value generated by python with ε. If the value is greater than
epsilon we look to the policy for the decision. If the value
is less than ε we take a random action. This action loop will
return -1 return if the actions resulted in a loss, 0 if the actions
resulted in a tie and +1 if the actions resulted in a win.

Algorithm 2 Monte Carlo On-Policy [2]
π(s)← Unif(0, 1),∀ s ∈ S
Q(s, a)← 0 ∀ s ∈ S, a ∈ A
C(s, a)← 1 ∀ s ∈ S, a ∈ A
for 1, 000, 000 do

for all (S,A) pairs do
G← Decision Loop(π(s))
Q(s, a)← (Q(s, a) + (G−Q(s, a)/C(s, a))) or
V (s)← (V (s) + (G− V (s))/C(s)))
C(s, a)+ = 1
π(s)← argmaxaQ(s, a)

end for
end for
return π∗(s)

For each episode we get our actions and the reward. We
use this reward to update the value function for all actions
and states in the episode. We are using every-visit Monte
Carlo and taking incremental averages of our rewards at
each iteration. The counter is initialized at 1 for each state
and then incremented after the update. Then, for each action
taken we update the policy to take the action based on the
value function. If the value function was positive it indicated
hitting, if the value function was negative it indicated staying.
This is repeated until the value function converges and then
we have our optimal policy.

When evaluating the effectiveness of the learned policy
the stochasticity was removed and the actions taken were
dictated by the policy. This allows for the true evaluation of
the policy and removes the exploration aspect of the agent.

III. EXPERIMENTS

Code was written in python to simulate the game of
Blackjack and create our agent. The Blackjack game
simulator code was sourced from Github [3]. This code has
the foundations of a Blackjack simulator, however, some win
conditions were not accounted for, rewards were not defined
and there was not way to have the agent manipulate the game.
To fix this, the base code was modified to allow our agent
to interact with the environment. The agent was also written
in python. The agent is passed the sum of the two cards the
player is dealt and the one card showing for the dealer. The
agent would then return an action to the blackjack simulator
so the game can continue. This process repeats until the game
terminates and the reward is passed back to the agent and the
policy, counts, and value function are updated.

Initially, we ran our model for 100,000 episodes but
discovered that our count matrix was low for certain states.
Especially in states with very low probability of occurring
(such as dealer: 2, and player sum: 4). This is also an artifact
of playing each game with only one deck. This may mean
that our action-value function at the time, had not converged
to the true value. We increased our ε and increased the
number of episodes. This gave us much better coverage over



all state-action pairs and increased our confidence in the
resultant action-value matrix. It was also found that using a
action value function proved very expensive to learn as we
were never able to achieve convergence. To fix this problem
a state value function was utilized. This state value function
was increased when hitting resulted in a win, and decreased
when hitting resulted in a loss. The state value function was
decreased when staying resulted in a win and the value was
increased when staying resulted in a loss. This effectively
reduced the state space by a factor of two as instead of a
matrix for each action, there is only a single matrix. The
optimal policy was then selected by checking if the value
function for that state was above or below zero.

The Blackjack agent was trained for 1,000,000 episodes
and it was found that the value function and policy have
converged. At this point the agent was evaluated over 100,000
episodes.

IV. RESULTS AND DISCUSSION

The win-rate of the agent with the action-value formulation
was found to be 41.7% and 41.18% with the state value
formulation. Perfect strategy blackjack has an average return
of 42.42%. [1] These rates change when ignoring ties as
the tie should not count against the win rate. Our win-rate
when ignoring ties was found to be 44.03% with action-value
and 43.89% with state-value, while perfect strategy blackjack
results in a win-rate of 46.36%. We attribute the difference in
score to the design of our game. The state-value formulation’s
policy and value function are much closer to the optimal from
[2], but may not have performed as well due to the way our
game is run.

Figure 1. Sub-Optimal Policy

Figure 2. Optimal Policy

Figure 1 shows the sub-optimal policy of our agent using
the action-value formulation. The black squares represent a
“stay” action and the white squares represent a “hit” action.
Note the patchiness of the policy. In [2] the policy is much
more smooth across the hit regions. We believe this is due to
how we set up the games. In each game we are using only one
deck and then every game the deck is reshuffled. When a high
card is drawn the probability of another high card is lower
in this case than in reality with a multi-deck or a theoretical
infinite deck game. Figure 2 shows the optimal policy when
we switched to a state value formulation. This policy (yellow
= hit, blue = stay) is much closer to the optimal policy in [2].

Figure 3. Value Surface for hit action

Figure 4. Value Surface for stay action



Figure 5. Optimal Value Function

Figures 3 and 4 show the action-value functions for each
action plotted as surfaces. The first axis on the left is the
dealer’s face up card, and the second axis is the sum of the
player’s cards. The third axis represents the value of taking
each action in that state. Note the jagged form of the value
functions. Figure 5 shows the state value function. This surface
is much more smooth and is comparable to [2].

Figure 6. Count Surface for hit action

Figure 7. Count Surface for stay action

Figure 8. Count Surface

Figures 6 and 7 show the counts when using the action-value
formulation. Note how much higher the stay counts are than
the hit counts. This is due to the fact the algorithm must choose
to “stay” at least once per game. When using the action-value
formulation this may have given a large bias to the “stay”
action since it has been explored many more times than the
“hit” action.

V. CONCLUSION

It was found that the Monte Carlo agent was able to learn
the game of Blackjack to a high level of play. The agent
came within 2% of optimal play when ignoring ties. This
2% difference can be attributed to the state formulation. In
formulating the state space aces were considered to be the
highest acceptable value. This would lead the agent to learn a
conservative, and sub optimal approach to blackjack as often it
would make sense to hit in a situation in which the player has
an Ace and a 3, but the agent would see a 14 and be fearful
of busting when in reality if the player hit they cannot bust.
This paper has demonstrated that our Monte Carlo method
was able to come close to approximating optimal play in the
game of Blackjack. We would expect our optimal policy to
perform even closer to optimal play with a more accurate state
representation.

REFERENCES

[1] “Blackjack - Probability,” The Wizard of Odds. [Online]. Available:
https://wizardofodds.com/ask-the-wizard/blackjack/probability/.

[2] R. S. Sutton and A. G. Barto, Reinforcement learning: an introduction.
Cambridge: The MIT Press, 2018.

[3] “Python Blackjack,” Gist. [Online]. Available:
https://gist.github.com/mjhea0/5680216.


	Introduction and Background
	Approach
	Markov Decision Process Formulation
	Possible Solutions
	Monte Carlo Method

	Experiments
	Results and Discussion
	Conclusion
	References

