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ABSTRACT While Bayesian neural networks (BNNs) have gained popularity for their theoretical guarantees
and robustness, they have yet to see a convincing implementation at scale. This study investigates a
variational inference-based neural architecture called Variational Density Propagation (VDP) that boasts
noise robustness, self-compression and improved explanations over traditional (deterministic) neural
networks. Due to the large computational burden associated with BNNs, however, these methods have yet
to scale efficiently for real-world problems. In this study, we simplify the VDP architecture by reducing its
time and space requirements and allowing for efficient scaling to ImageNet level problems. Additionally,
we evaluate the inherent properties of the VDP method in order to validate the simplified method. Across
all datasets and architectures, our method exhibits exceptional self-compression capabilities, retaining
performance even with over 90% of its parameters pruned. The method also presents improved visual
explanations via saliency maps, suggesting superior explanation quality compared to deterministic models.
Lastly, we employ the VDP method to train a vision transformer on ImageNet-1k, something that was
previously impossible due to the inherent computational constraints of the method. Our code has been made
readily available at the link below.

INDEX TERMS Bayesian neural networks, transformers, imagenet, pruning, uncertainty, supervised
learning, variational inference, scalability.

I. INTRODUCTION
The state of machine learning research has seen tremendous
growth, with increasingly complex and large-scale models
being developed [1]. This increase in size and complexity,
however, has led to a notable concern regarding overfit-
ting [2]. As models become larger, they may inadvertently
memorize training data instead of learning to generalize
therebyresulting in poor performance on unseen or novel data
samples. A guiding principle against complexity increase
has been The Minimum Description Length Principle which
states that the best model is one which minimizes the
distance between (1) the model and data and (2) the model’s
description of itself [3]. This principle is the foundation
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of stochastic modeling and a benefit of using Bayesian
inference.

Bayesian inference provides a principled approach for
dealing with uncertainty by combining prior knowledge and
observed data to update beliefs about model parameters such
as Gaussian Processes and Relevance Vector Machines [4].
In the context of machine learning, Bayesian Neural
Networks (BNNs) extend this framework by incorporating
Bayesian principles into the architecture and training of
neural networks [5]. BNNs estimate the posterior distribution
overmodel parameters, allowing them to capture and quantify
uncertainties in both predictions and model structures.
By leveraging Bayesian inference, BNNs offer a more
robust and adaptive learning approach, which can potentially
alleviate overfitting and improve generalization performance
in complex machine learning tasks [6].
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BNNs have demonstrated successful implementations
across a wide range of tasks, including computer vision [7],
[8], [9], speech [10], and natural language processing [11].
BNNs have shown particular promise in critical decision-
making tasks [12], [13], [14], due to their ability to capture
and model uncertainty in both parameters and predictions [7].
Several classical techniques have been used to approximate
Bayesian inference for neural networks, such as Laplacian
approximation [15], Hamiltonian Monte Carlo [16], and
Variational Inference (VI) [6], [17]. Specifically, estimat-
ing the parameters of the variational distribution that
approximates the posterior of the latent variables given an
observation is analogous to averaging model parameters
via Monte Carlo sampling [18]. This model averaging
inherently reduces variance in computed parameters, thus
mitigating overfitting [19]. Moreover, the regularization term
of the VI algorithm can lead to extreme self-compression
of the model’s parameters [20] and thus further decreasing
overfitting.

A major drawback of BNNs is their limited scalability in
terms of both model and data size [21]. A high-quality imple-
mentation of a VI-based training scheme called Variational
Density Propagation (VDP) has emerged, offering state-
of-the-art performance on various computer vision tasks,
reducing epistemic uncertainty, and providing an estimate of
aleatoric uncertainty [8], [9]. However, the primary limitation
of the VDP algorithm is the substantial computational load
due to the propagation of the full covariance matrix through
layers of the neural network. Propagating these large matrices
quickly becomes infeasible in terms of space and time for
all but the smallest ResNet networks and hence, significantly
limiting the applicability of the VDP method for problems
that require training on datasets larger than CIFAR-10 [22].
In this work, we propose a modification to the VDP

method, in which we disregard the off-diagonal terms of
the covariance matrix and only propagate the diagonal terms
(variances). This simplification (1) enables efficient scaling
of these models to larger and more complex datasets, (2)
provides a theoretical memory requirement only twice that
of a traditional deep neural network and (3) retains all the
benefits of BNNs. Our contributions include:

1) A theoretical justification for the novel variance-only
VDP implementation (referred to as VDP++).

2) A comparison of runtime and memory requirements
between VDP++ and traditional models.

3) Validation of inherent BNN properties, including
uncertainty quantification, self-compression, and
robust interpretations or explainability.

4) Implementation of Bayesian VDPVision Transformers
(VDP-ViT) and scaling the model to ImageNet-1k.

First we discuss the related work and gave a background
of each unique property of BNNs. Next, we will define
the equations that govern our implementation of the VDP
algorithm. We detail our experimental design and discuss the
parameters eachmethod. Finally, wewill report the numerical

results from our experiments and discuss the impact and
planned future work.

II. RELATED WORK
This section summarizes the related work on self-
compression, uncertainty quantification and explainability.

A. SELF-COMPRESSION
Since their inception in the early 1990s, BNNs have been
developed with the goal of minimizing the information
content in the weights of a neural network. This approach is
based on the principle that smaller model sizes often lead to
more generalizable models [6], [15]. However, contemporary
BNN methods such as Bayes by Backprop (BBB) [7] and
Dropout CNNs [23] appear to lack this property. In the case
of BBB, parameter histograms suggest a less efficient use
of parameters compared to traditional deterministic neural
networks [7]. To the best of our knowledge, the only modern
framework that exhibits this self-compression property is
Variational Density Propagation (VDP) [8], [9], [20]. The
self-compression characteristic of VDP can be attributed
to the propagation of variance information through the
network layers [20]. By quantifying parameter uncertainty,
the model can selectively target less important parameters
during training. In the absence of uncertainty quantification,
the network’s utilization of its parameter space is less
efficient.

B. UNCERTAINTY QUANTIFICATION
The total uncertainty in a machine learning model can
be characterized by two distinct components. The first is
epistemic uncertainty, which arises from the parameters of
the model. The second is aleatoric uncertainty, which stems
from the data or environment. Uncertainty quantification is
becoming increasingly important in high-stakes decision-
making, as establishing trust between users and models is
crucial for the widespread adoption of such models [24].
To date, the implementation of machine learning models in
high-stakes domains, such as medicine, has not achieved
substantial user acceptance and confidence [25], [26]. This
is primarily due to high false alarm rates [27] and suboptimal
test characteristics [28]. VI has been demonstrated to alleviate
the impact of epistemic uncertainty by effectively averaging
predictions during inference [6], [7], [19]. Furthermore, the
output variance associated with a single prediction obtained
from a BNN can quantify the level of aleatoric uncertainty in
that prediction [8], [29].

C. EXPLAINABILITY
A common approach to interpreting predictions in computer
vision models involves calculating sensitivity maps. These
gradient-based methods are used to determine the contribu-
tion of each image pixel to the classification output [30].
However, interpretations derived from deep neural networks
(particularly sensitivity maps) are often fragile, meaning they
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FIGURE 1. In order to motivate the needs for a simplification of the VDP algorithm, we measured the: (a) average epoch time, (b) maximum
GPU memory usage for each model type training on MNIST with a batch size of 512 and (c) test accuracy on the MNIST dataset with a high level
of noise added (higher is better). All measurements were taken using a Quadro RTX 8000 GPU.

are sensitive to small perturbations in the input or model [31],
[32], [33]. One potential solution to this issue involves
sampling the surrounding input space, adding Gaussian
noise, and averaging the resulting interpretations [34]. This
averaging technique for reducing uncertainty aligns with
our hypothesis on BNNs and weight averaging. It has been
demonstrated that the explanations generated by variational
inference-based BNNs, including VDP result in higher
fidelity explanations when compared to those generated by
deterministic models [35], [36], [37].

III. METHODS
The details of the novel VDP++ approach are presented.

A. VARIANCE-ONLY VARIATIONAL DENSITY
PROPAGATION (VDP++)
Our work presents a novel simplification of the VDP
algorithm developed in [8]. This method utilizes VI and
assumes Tensor Normal Distributions (TNDs) defined over
the parameters of the neural network in order to propagate
the first two moments (mean and covariance) of these TNDs
through the layers of a neural network [8]. However, in an
experimental setting, propagating covariance proves to be
computationally expensive in terms of both time and space.
As these networks scale, calculating such large matrices
becomes increasingly burdensome, rendering the method
impractical. In this work, we have streamlined the VDP
algorithm by propagating only the diagonal elements of the
covariance matrix, i.e., the variances. This simplification,
originally discussed by Hinton [6], is akin to the assumptions
of the Naive Bayes classifier [38], where class conditional
independence of the features is assumed. This assumption
may (and is often) violated in practice, however this tends
to not hinder the performance of the classifier.

For the sake of brevity, we have omitted the original
derivation of the VDP algorithm and only provide the mod-
ifications needed to compute the variance-only version [8].
To describe our method, we use a 2-layer fully-connected
neural network as an example. In a traditional or deterministic
neural network, Equation 1 describes the forward pass of the
model.

z = Wx + b[1],

a = f (z),

ŷ = g(Va+ b[2]), (1)

where W ∈ Rj×k is the weight matrix of layer 1, x ∈ Rk×1

is the input vector, b[1] ∈ Rj×1 is the bias vector in layer 1,
z ∈ Rj×1 is the result of the linear operation in layer 1, f is an
arbitrary element-wise non-linear function, g is an arbitrary
non-linear activation function that does not operate element-
wise, a ∈ Rj×1 is the result after applying the non-linear
activation function in layer 1, V ∈ Rl×j is the weight matrix
in layer 2, b[2] ∈ Rj×1 is the bias vector in layer 2, ŷ ∈ Rl×1

is the predicted output, k is the dimensionality of the input
vector, j is the number of nodes in layer 1 and l is the number
of classes to predict.

To propagate the first two moments, several assumptions
must be made. First, let us consider w⊤

m = mth row of W ,
m = 1, 2, . . . , j and zm = w⊤

mx + b[1]m , m = 1, 2, . . . , j.
Next, consider the following assumptions: the input vector
x is deterministic, a ∼ N (µa, 6a), wm ∼ N (µwm , 6wm ),
m = 1, 2, . . . , j, b[1]m ∼ N (µb[1]m

, σ 2
b[1]m

), m = 1, 2, . . . , j,

vn ∼ N (µvn , 6vn ), n = 1, 2, . . . , l, b[2]n ∼ N (µ[2]
bn , σ 2

b[2]n
),

n = 1, 2, . . . , l and the weight vectorswm, a, bias b[1] and b[2]

aremutually uncorrelatedwith each other form = 1, 2, . . . , j.
Based on these assumptions, the elements of µz and σ 2

z are
given in Equations 2 and 3.

µzm = E[w⊤
mx + b[1]m ],

= E[w⊤
m]x + E[b[1]m ],

= µ⊤
wmx + µb[1]m

. (2)

σ 2
zm = Var[w⊤

mx + b[1]m ],

= x⊤
m62

wmxm + σ 2
b[1]m

,

= x2m[σ
2
wm ]

⊤
+ σ 2

b[1]m
. (3)

Since we have assumed the weight vectors and the elements
of the bias vector to be uncorrelated, 6wpwq = 0 and σbpbq =

0 for p ̸= q, where p, q = 1, 2, . . . , j. Hence, the covariance
is zero. To propagate the first two moments through
an arbitrary element-wise non-linear function, we utilize
the first-order Taylor series approximation as shown in
Equations 4 and 5. In Equation 5, ⊙ denotes element-wise
multiplication.

a = f (z),

= f (µz) + f ′(µz)(z− µz)

+ . . . ≈ f (µz) + f ′(µz)(z− µz),
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FIGURE 2. Global unstructured pruning was performed on each model type tested on: (a) MNIST and (b) CIFAR-10. This process removes
parameters from the model from all layers in by their L1 norm. Here we show that the VDP model types have superior self-compressing
properties as they can maintain their performance when greater than 90% of the parameters of the model are removed. Five models were
trained for each model and dataset and the 95% confidence interval is displayed as the shaded region.

E[a] = µa ≈ f (µz),

µa = f (µz). (4)

σ 2
a = σ 2

z ⊙ (f ′(µz))2. (5)

For the second layer of the network, we can no longer
consider the incoming vector, µa, to be deterministic.
Additionally, we now need to propagate the incoming
variance, σ 2

a . Again, we assume the off-diagonal elements
of the covariance 6a to be 0 and choose to only propagate
the variance. The mean and variance propagated through the
second fully-connected layer are given in Equations 6 and 7.

µỹ = E[v⊤n a+ b[2]n ],

= E[v⊤n ]E[a] + E[b[2]n ],

= µ⊤
vnµa + µb[2]n

. (6)

σ 2
ỹ = Var[v⊤n a+ b[2]n ],

= Var[v⊤n a] + Var[b[2]n ],

= Tr(62
v6

2
a ) + µ⊤

v 62
aµv + µ⊤

a 62
vµa + 62

b[2]n
,

= σ 2
v [σ

2
a ]

⊤
+ µ2

v[σ
2
a ]

⊤
+ µ2

a[σ
2
v ]

⊤
+ σ 2

b[2]n
. (7)

Since the diagonals of the covariance matrix are along the
rows of the variance matrix, the trace of the product of two
vectors is equivalent to their inner product.

Next, we use a non-linear activation function such as
softmax to obtain the predictions of our model. Since g does
not operate element-wise on our mean and variance, we use
a slightly different Taylor-series to obtain Equations 8 and 9
[39].

µŷ ≈ g(µỹ), (8)

σ 2
ŷ ≈ J2gσ 2

ỹ , (9)

where Jg is the Jacobianmatrix of the softmax function gwith
respect to ỹ and calculated at µỹ.

Finally, we use the Evidence Lower Bound (ELBO)
function, L(φ,D), which consists of two parts: the expected
log-likelihood of the training data given the weights, and a

regularization term, D = {x(i), y(i)}Ni=1 given by Equation 10.

L(φ,D) = Eq(φ)[log p(D|φ)] − KL[q(φ)|p(φ)]. (10)

This regularization term operates most similarly to L1
regularization. In practice, the Frobenius norm of the
parameters of each layer are minimized. In Equation 10.
φ represents the weights W , V , and biases b[1], b[2]. The
expected log-likelihood is given in Equation 11 and the KL
term is given in Equation 12.

Eq(φ)[log p(D|φ)]

≈
1
M

M∑
m=1

log p(D|φ),

≈ −
Nl
2

log(2π) −
1
M

M∑
m=1

[
N
2
log(|6ŷ|)

+
1
2

N∑
i=1

(y(i) − µ
(m)
ŷ )⊤(6(m)

ŷ )−1(y(i) − µ
(m)
ŷ )

]
,

≈ −
Nl
2

log(2π) −
1
M

M∑
m=1

[ l∑
k=1

log σ 2
ŷk

+
1
2

N∑
i=1

(
y(i) − µ

(m)
ŷ

)2
diag(σ 2

ŷ )
−1

]
. (11)

In Equation 11, y(i) is the true label of the ith data point,
N is the number of data points and M is the number of
Monte Carlo samples needed to approximate the expectation
by summation.

Recall that we have assumed the weight vectors and the
elements of the bias vector to be uncorrelated,6wpwq = 0 and
σbpbq = 0 for p ̸= q, where p, q = 1, 2, . . . , j. It follows
that 6ŷ is a diagonal matrix with elements σ 2

ŷ . The log
determinant of a diagonal matrix simplifies to the product of
the elements that can be implemented as a sum of the log of
the elements, 1

N

∑N
i=1

(∑l
k=1 log σ 2

ŷk

)
to prevent numerical

overflow. Additionally, the inverse of a diagonal matrix is
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FIGURE 3. To validate our model’s robustness to noise, a procedure designed by Dera et al. [8] was performed. Gaussian noise was added to
the test set of: (a) MNIST and (b) CIFAR-10 to generate sets of images with varying Signal to Noise Ratio (SNR). The output variance of the
predicted class was extracted for each prediction and was aggregated over the test set. The output variances were normalized by dividing
the variance by the mean variance of the lowest SNR. Five models were trained for each model and dataset and the 95% confidence interval
is displayed as the shaded line.

equivalent to the reciprocal of each element, diag(σ 2
ŷ )

−1.

KL[q(φ)|p(φ)] = −
1
2

l∑
n=1

(j log σ 2
vn − ||µvn ||

2
F − jσ 2

vn ).

(12)

B. VDP++ FOR CONVOLUTIONAL KERNELS
In practice, convolution operations are implemented as
matrix multiplications. Therefore, no additional derivations
are needed to propagate the first two moments through
convolutional kernels. For max-pooling, we cannot take
the maximum variance. Instead, we utilize the co-pooling
operation. The co-pooling operation is the same for the first
moment: the maximum of the means in the kernel is passed
forward. For the variance, we keep only the elements of the
variance that correspond to the maximum means [8].

C. VDP++ FOR RESIDUAL CONNECTIONS
Residual connections are a module used in deep architectures
to resolve the issue of vanishing gradients. These connections
propagate parameters from previous layers in the neural
network by concatenating the output of one layer to the input
of the next layer [40]. The residual function is effectively a
non-elementwise, non-linear function. Therefore, we can use
the same formulation for Softmax as in Equation 9 [9].

µxl+1 ≈ µxl + F(µxl ),

σ 2
xl+1

≈ J2σ 2
xl . (13)

In Equation 13, J is the Jacobian of xl+1 with respect to xl
and F is the residual function [9].

D. VDP FOR VISION TRANSFORMERS
A novel contribution in this work, we extend the VDP
framework to Vision Transformers (ViTs). Given the simple
nature of the ViT architecture, to implement models like
ViT-S/16 and ViT-B/16 [41], [42], we need only implement
the layer normalization operation [43] for VDP. Similar

to the batch normalization formulation for VDP [9], layer
normalization for VDP++ is given in Equation 14 where x
is the input and y is the output of the layer.

µy =
µx − µLN

√
Var(µx) + ϵ

⊙ γ + β,

σ 2
y =

(
µLN

√
Var(µx) + ϵ

)2

⊙ σ 2
x . (14)

E. VALIDATION AND ROBUSTNESS
To validate our approach, we will assess the VDP++

method on the MNIST dataset using various back-ends: a
deterministic CNN, VDP [8], Bayes by Backprop (BBB) [7],
and VDP++. On the CIFAR-10 dataset, we will evaluate
the deterministic model and VDP++. For the MNIST
dataset, we employ a LeNet architecture, while for CIFAR-
10, we use ResNet-18. In order to determine whether
any of the backends result in significantly different test
accuracy, we will repeat training five times and perform
a one-way Analysis of Variance (ANOVA) on the results.
As our approach aims to simplify the original method while
preserving its properties, wewould like to show no significant
differences in performance among the methods (the p-value
p is greater than a threshold α).

To evaluate the robustness properties of VDP, we will
replicate an experiment from the original implementation,
which entails adding zero-mean Gaussian noise to the
test set at varying magnitudes and examining the pattern
of the normalized output variance [8]. We will use the
Spearman rank-order correlation measure to compare the two
implementations. Additionally, we will compare the max-
imum GPU memory allocation and training time for each
formulation at a fixed batch size of 512 to benchmark each
method’s performance.

To examine the self-compression properties of VDP++

[20], we will evaluate the performance of each backend on
the MNIST test set as each model undergoes global pruning
by weight magnitude (L1 unstructured pruning).
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FIGURE 4. To evaluate the effect if any on the quality of explanations produced by BNNs, two metrics were used: Sensitivity Max [33] and
Infidelity [44] (lower is better). Perturbations were added to all instances of the test sets of (a) MNIST and (b) CIFAR-10 and the Sensitivity
and Infidelity scores were computed and averaged. Five models were trained for each model and dataset and the 95% confidence interval is
displayed as the error bar.

Lastly, we will assess the explainability of saliency
maps produced by the deterministic model and VDP++.
The metrics we will utilize to evaluate the quality of the
explanations are Infidelity and Sensitivity Max [44]. We will
employ pair-wise t-tests to determine statistical significance,
if any. For all statistical analyses, we choose α = 0.01.

F. SCALING TO LARGE DATASETS
The primary limitation of using Bayesian neural networks lies
in the original formulation’s inability to scale to model sizes
larger than ResNet-18. Overcoming this drawback would
enable the application of BNNs to more complex problems
and larger datasets, which is essential for advancing the state-
of-the-art in machine learning. To that end, we will evaluate
the performance of VDP++ on the ImageNet-1k dataset
using Vision Transformers (ViTs). This analysis involves
examining the ViT-B/16 [42] and ViT-S/16 [41] architectures.
To our knowledge, this is the first analysis of BNNs on
ImageNet-1k using the ViT architecture.

IV. RESULTS
In this section, the results with respect to complexity,
compression, noise robustness, uncertainty quantification and
explainability. A statistical analysis is also presented.

A. TIME-SPACE IMPROVEMENTS
We examined the advantages of our method in both time and
space. On the MNIST dataset, Figure 1 shows a comparison
of average epoch time and maximum GPU allocation for
each method. The original VDP method [8] denoted ‘‘VDP
Cov’’ took nearly 10x longer to complete one epoch of
training as well as 10x the GPU memory requirement as
compared to traditional networks (DET) and Bayes-by-
Backprop (BBB) [7]. Training on MNIST with a batch size
of 512 required nearly 40GB of GPU memory. Our proposed
method, VDP++, reduced the average epoch time by about
4x over the prior method and reduced the GPU memory
requirement by 10x.

B. SELF-COMPRESSION
The first of the inherent properties of VDP that we
investigated was self-compression. We began by training
5 models from each method on MNIST (DET, BBB, VDP
Cov, VDP++) and CIFAR-10 (DET, VDP++). A one-
way ANOVA statistic was computed on the test statistics
of each method and it was found that the performances
were not significantly different from one another (p >

0.01). Next, we iteratively pruned each model using
global L1 unstructured pruning and computed test statistics.
Figure 2 shows the result of this procedure. The VDP
Cov and VDP++ approaches perform similarly on MNIST
(Figure 2a). However, VDP++ was able to prune > 90%
of its parameters before the performance began to drop
significantly. This was verified by using a t-test of the
statistics that compares < 90% pruning and> 90% pruning.
This trend continued to hold for the CIFAR-10 experiments
(Figure 2b).

C. NOISE ROBUSTNESS AND UNCERTAINTY
QUANTIFICATION
Figure 1c shows the result of adding zero-mean Gaussian
noise to the test set ofMNIST and examining the test accuracy
at the highest level of noise (SNR of −6dB). Here the
Bayesian models (BBB, VDP Cov, VDP++) all significantly
outperformed the deterministic network (DET). Pair-wise
t-tests were performed on deterministic versus each Bayesian
method at this level of noise and all p-values were significant
(p < 0.01). Figure 3 shows the output variance as a function
of SNR normalized by the −6dB value for both MNIST
(Figure 3a) and CIFAR-10 (Figure 3b). We used Spearman
correlation to compare the behavior of VDP-Cov and VDP++
in the presence of varying amount of noise (Figure 3a), it was
found that there was no significant difference (p < 0.01)
between the methods.

D. EXPLANATION SENSITIVITY
Due to the high regularization of the network, we postulated
that explanations via saliency maps from Bayesian Networks
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FIGURE 5. Replication of the pruning experiments (a), and robustness experiments (b) on ImageNet-1k using a VDP-ViT-S/16 architecture.
Due to the large hyperparameter selection space and compute time, we were unable to achieve a top-1 accuracy greater than 45%.
Although the performance of these models are not high, the VDP retains its self-compressing and noise robustness properties.

would be less sensitive to perturbations. Figure 4 shows the
average SensitivityMax and Infidelity onMNIST (Figure 4a)
and CIFAR-10 (Figure 4b) (lower is better). Pair-wise t-tests
indicate significant differences between methods for all
experiments (p < 0.01). The deterministic method narrowly
outperformed VDP++ with respect to Sensitivity Max.
However, VDP++ significantly outperformed all methods
with respect to Infidelity.

E. ImageNet AND VDP-ViT
To validate our implementation of VDP-ViT, we trained a
small ViT on MNIST and confirmed noise robustness using
the variance vs SNR experiment. We then began parameter
sweeps for ViT-B/16 and ViT-S/16 but ultimately decided
on only optimizing ViT-S/16 due to long training times.
The training was split across 6 Quadro RTX 8000 GPUs
following the regime outlined by Beyer et al. [41]. Ultimately,
we were only able to obtain a model with 45% top-1
training accuracy given the long training times and large
parameter space to search. Figure 5 shows the same analyses
as above using the underfitted ImageNet-1k model. Even in
this state, the VDP++ model still retains noise robustness
and self-compressing properties, remaining consistent with
the smaller models. The results for explanation sensitivity
were not consistent with our prior results most likely due to
the low performance of the model.

V. DISCUSSION AND CONCLUSION
Our study aimed to investigate the benefits and properties of
the proposed novel VDP++method compared to the original
VDP method and other traditional networks. The results
show that VDP++ offers several key advantages, includ-
ing significant time-space improvements, self-compression,
noise robustness, and uncertainty quantification. The time-
space improvements demonstrated by VDP++ enable more
efficient training and reduced GPU memory requirements,
which are crucial in large-scale applications. This addresses
the primary limitations of the original VDP method, which

required much longer training times and higher memory
consumption.

In terms of self-compression and noise robustness,
VDP++ performs similarly to the original VDP method.
Additionally, we show that it was able to prune more
than 90% of its parameters before performance significantly
declines. This ability to maintain performance despite sub-
stantial pruning suggests that VDP++ learns more efficient
representations and could lead to more compact models that
may be beneficial for edge computing.

The evaluation of the explanations produced by the
various backends revealed unexpected results. Our original
hypothesis was that due to the averaging effect of BNNs,
we would have expected to see an improvement in Sensitivity
Max (measures the stability and robustness of the explanation
with respect to small perturbations in the input data) over
deterministic models. An improvement in infidelity would
suggest that the explanation approximates the underlying
model’s decision-making process better in BNNs than in
deterministic models. The difference in Sensitivity Max,
while significant (p < 0.01), was quite small. According to
the original work from which it was derived, this score can be
reduced by modifying the formulation of the saliency map,
while infidelity cannot [44]. This yields promising results
for the use of BNNs in areas where interpretability and
explainability are desirable.

During our testing, we found that the balance between
the two terms of the loss function in Equation 10 had the
largest effect on the convergence and subsequent properties
of our models. Since the KL term of Equation 12 is
largely dominated by matrix norms, in larger models
especially, this term tends to dominate. When this happens,
the model compresses itself at the cost of performance.
Conversely, when the KL term is scaled down too much (i.e.
Eq(φ)[log p(D|φ)] ≫ KL[q(φ)|p(φ)]), the model overfits and
the resulting models lack the inherent properties like self-
compression and noise robustness, effectively becoming a
deterministic model. To mitigate this behavior, we provided
scaling terms to our hyperparameter optimizer and searched

VOLUME 12, 2024 150959



J. R. Epifano et al.: Efficient Scaling of Bayesian Neural Networks

outright. This proved to be the fastest and most reliable
method for training VDP++ models with high performance
while retaining their inherent properties.

VI. LIMITATIONS AND FUTURE WORK
Our limitation in this study was a lack of computing
resources. Given the increased parameter space we needed to
search for our ImageNet-1k experiment, it became infeasible
to expect high model performance in a short period of time.
It is also worth noting that the original ViT formulation
made use of the JFT-300M dataset for pretraining, which
is not publicly available. We have substantially reduced the
computational burden of the original VDP method while
preserving its desirable properties. In tandem with our
preliminary results on ImageNet-1k, scaling this approach to
larger datasets is both possible and feasible given adequate
computing resources and time. The robustness and improved
explanatory capabilities of the VDP framework make it
highly attractive for high-risk domains such as healthcare.
Furthermore, the self-compressing properties render this
technique suitable for applications with varying resource
constraints, such as edge computing and large language
models where computational resources are highly valuable.
Future work will look to further analyze these interesting
properties such as different noise scenarios for testing the
robustness of the uncertainty measure. Code to reproduce our
results is readily available on Github.1
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